42 research outputs found

    Double-degenerate Fermi mixtures of 6^6Li and 53^{53}Cr atoms

    Full text link
    We report on the realization of a novel degenerate mixture of ultracold fermionic lithium and chromium atoms. Based on an all-optical approach, with an overall duty-cycle of about 13 seconds, we produce large and degenerate samples of more than 2×105\times 10^5 6^6Li atoms and 10510^5 53^{53}Cr atoms, with both species exhibiting normalized temperatures of about T/TFT/T_{F}=0.25. Additionally, through the exploitation of a crossed bichromatic optical dipole trap, we can controllably vary the density and degree of degeneracy of the two components almost independently, and widely tune the lithium-to-chromium density ratio. Our 6^{6}Li-53^{53}Cr Fermi mixture opens the way to the investigation of a variety of exotic few- and many-body regimes of quantum matter, and it appears as an optimally-suited system to realize ultracold paramagnetic polar molecules, characterized by both electric and magnetic dipole moments. Ultimately, our strategy also provides an efficient pathway to produce dipolar Fermi gases, or spin-mixtures, of ultracold 53^{53}Cr atoms.Comment: 14 pages, 5 figure

    Green line hospital-territory study: A single-blind randomized clinical trial for evaluation of technological challenges of continuous wireless monitoring in internal medicine, preliminary results

    Get PDF
    Background: Wireless vital parameter continuous monitoring (WVPCM) after discharge is compared to regular monitoring to provide data on the clinical-economic impact of complex patients (CPs) discharged from Internal Medicine Units of Ospedale dei Castelli, Lazio. Primary outcome: Major complications (MC) reduction. Secondary outcomes: Patients who reached discharge criteria within the 7th day from admission; difference in MC incidence at the conclusion of the standard telemonitoring/clinical monitoring phase, 5 and 30 days after discharge; and conditions predisposing to MC occurrence. Methods: Open label randomized controlled trial with wearable wireless system that creates alerts on portable devices. Continuous glycemic monitoring is performed for patients with diabetes mellitus. Results: There were 110 patients enrolled (mean age: 76.2 years). Comorbidity: Cumulative Illness Rating Scale CIRS-CI (comorbidities index): 3.93, CIRS SI (severity index): 1.93. About 19% scored a BRASS (Blaylock Risk Assessment Screening Score) ≥20 indicating need for discharge planning requiring step-down care. Globally, 48% of patients in the control group had major complications (27 out of 56 patients), in contrast to 22% in the intervention group (12 out of 54 patients). Conclusions: Since WVPCM detects early complications during the post-discharge CPs monitoring, it increases safety and reduces inappropriate access to the Emergency Room, preventing avoidable re-hospitalizations

    Onset and Progression of Behavioral and Molecular Phenotypes in a Novel Congenic R6/2 Line Exhibiting Intergenerational CAG Repeat Stability

    Get PDF
    In the present study we report on the use of speed congenics to generate a C57BL/6J congenic line of HD-model R6/2 mice carrying 110 CAG repeats, which uniquely exhibits minimal intergenerational instability. We also report the first identification of the R6/2 transgene insertion site. The relatively stable line of 110 CAG R6/2 mice was characterized for the onset of behavioral impairments in motor, cognitive and psychiatric-related phenotypes as well as the progression of disease-related impairments from 4 to 10 weeks of age. 110Q mice exhibited many of the phenotypes commonly associated with the R6/2 model including reduced activity and impairments in rotarod performance. The onset of many of the phenotypes occurred around 6 weeks and was progressive across age. In addition, some phenotypes were observed in mice as early as 4 weeks of age. The present study also reports the onset and progression of changes in several molecular phenotypes in the novel R6/2 mice and the association of these changes with behavioral symptom onset and progression. Data from TR-FRET suggest an association of mutant protein state changes (soluble versus aggregated) in disease onset and progression

    Selective Cholinergic Depletion in Medial Septum Leads to Impaired Long Term Potentiation and Glutamatergic Synaptic Currents in the Hippocampus

    Get PDF
    Cholinergic depletion in the medial septum (MS) is associated with impaired hippocampal-dependent learning and memory. Here we investigated whether long term potentiation (LTP) and synaptic currents, mediated by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the CA1 hippocampal region, are affected following cholinergic lesions of the MS. Stereotaxic intra-medioseptal infusions of a selective immunotoxin, 192-saporin, against cholinergic neurons or sterile saline were made in adult rats. Four days after infusions, hippocampal slices were made and LTP, whole cell, and single channel (AMPA or NMDA receptor) currents were recorded. Results demonstrated impairment in the induction and expression of LTP in lesioned rats. Lesioned rats also showed decreases in synaptic currents from CA1 pyramidal cells and synaptosomal single channels of AMPA and NMDA receptors. Our results suggest that MS cholinergic afferents modulate LTP and glutamatergic currents in the CA1 region of the hippocampus, providing a potential synaptic mechanism for the learning and memory deficits observed in the rodent model of selective MS cholinergic lesioning

    Taming ultracold RbSr and Sr<sub>2</sub>

    Get PDF
    Ultracold molecules have recently attracted much attention because of their envisioned impact on both technology and fundamental science. The physics within them, i.e. their rich internal structure, and between them, i.e. long-range interactions, offer an increased complexity compared to atoms, while allowing for full experimental quantum control of the relevant degrees of freedom. A promising method of production consists of a first stage, whereby the component atoms are trapped and cooled to ultracold temperatures, and a second stage, whereby these are associated into dimers. In particular, the ability of cooling alkaline-earth (AE) elements, besides more traditional alkalis (A), has put production of AE-AE and A-AE molecules within experimental reach. Homonuclear ground-state AE-AE, because of their insensitivity to external electric and magnetic fields, have been proposed for metrology and precision measurements. In this work we investigate efficient production of Sr dimers starting from either an atomic Mott-insulator or Bose-Einstein condensate. Heteronuclear ground-state A-AE would allow for novel few-body and many-body physics experiments. In this thesis we investigate production schemes for RbSr dimers, which oweing to their large electric and magnetic dipole moments and heavy mass, are ideal candidates for the attainment of quantum degeneracy and subsequent experiments. We show our results from optical spectroscopy and combine them with thermal fluorescence data from our collaborators in Warsaw to derive the ground-state potential energy curve. Finally, we report on the experimental observation of magnetic Fano-Feshbach resonances between Rb and Sr and argue for their applicability to efficient molecule production
    corecore