513 research outputs found

    The Effect of Sulphate Doping on NanosizedTiO2andMoOx/TiO2Catalysts in Cyclohexane Photooxidative Dehydrogenation

    Get PDF
    The effect of sulphate doping of titania in promoting activity and selectivity ofMoOx/TiO2catalysts for the cyclohexane photooxidative dehydrogenation has been investigated in a gas-solid fluidized bed reactor. Sulphate and/or molybdate-modified titania catalysts were prepared by incipient wet impregnation of nanosized (5–10 nm crystallite size) samples. At 60% of titania surface coverage byMoOx, sulphate surface density was obtained up to 19μmol/m2without formation ofMoO3. The catalysts were characterized byN2adsorption-desorption at−196∘C, micro-Raman and UV-visible reflectance spectroscopy, thermogravimetric analysis coupled with mass spectroscopy (TG-MS), and mass titration. Unsulphated and sulphated titania are both active in cyclohexane total oxidation, but sulphate doping of titania has a detrimental effect on the reaction rate. On Mo-based catalysts, polymolybdate species enabled sulphated titania to convert cyclohexane to benzene (99% selectivity) and cyclohexene, reducing at zero the formation ofCO2. Cyclohexane conversion to benzene is almost linearly dependent on sulphate surface density, resulting in enhanced yield to benzene. The enhanced photooxidative dehydrogenation activity and benzene yield by sulphate doping could be attributed to the increase of surface acidity and, as a consequence, of cyclohexane adsorption

    Photocatalytic ethanol oxidative dehydrogenation over Pt/TiO 2: Effect of the addition of blue phosphors

    Get PDF
    Ethanol oxidative dehydrogenation over Pt/TiO 2 photocatalyst, in the presence and absence of blue phosphors, was performed. The catalyst was prepared by photodeposition of Pt on sulphated TiO 2. This material was tested in a gas-solid photocatalytic fluidized bed reactor at high illumination efficiency. The effect of the addition of blue phosphors into the fluidized bed has been evaluated. The synthesized catalysts were extensively characterized by different techniques. Pt/TiO 2 with a loading of 0.5wt of Pt appeared to be an active photocatalyst in the selective partial oxidation of ethanol to acetaldehyde improving its activity and selectivity compared to pure TiO 2. In the same way, a notable enhancement of ethanol conversion in the presence of the blue phosphors has been obtained. The blue phosphors produced an increase in the level of ethanol conversion over the Pt/TiO 2 catalyst, keeping at the same time the high selectivity to acetaldehyde. Copyright © 2012 J. J. Murcia et al.Peer Reviewe

    Field emission properties of as-grown multiwalled carbon nanotube films

    Full text link
    Multiwalled carbon nanotubes have been produced by ethylene catalytic chemical vapor deposition and used to fabricate thick and dense freestanding films ("buckypapers") by membrane filtering. Field emission properties of buckypapers have been locally studied by means of high vacuum atomic force microscopy with a standard metallic cantilever used as anode to collect electrons emitted from the sample. Buckypapers showed an interesting linear dependence in the Fowler-Nordheim plots demonstrating their suitability as emitters. By precisely tuning the tip-sample distance in the submicron region we found out that the field enhancement factor is not affected by distance variations up to 2um. Finally, the study of current stability showed that the field emission current with intensity of about 3,3*10-5A remains remarkably stable (within 5% fluctuations) for several hours.Comment: 18 pages, 5 figure

    Superconducting properties of Nb thin films deposited on porous silicon templates

    Full text link
    Porous silicon, obtained by electrochemical etching, has been used as a substrate for the growth of nanoperforated Nb thin films. The films, deposited by UHV magnetron sputtering on the porous Si substrates, inherited their structure made of holes of 5 or 10 nm diameter and of 10 to 40 nm spacing, which provide an artificial pinning structure. The superconducting properties were investigated by transport measurements performed in the presence of magnetic field for different film thickness and substrates with different interpore spacing. Perpendicular upper critical fields measurements present peculiar features such as a change in the H_c2(T) curvature and oscillations in the field dependence of the superconducting resistive transition width at H=1 Tesla. This field value is much higher than typical matching fields in perforated superconductors, as a consequence of the small interpore distance.Comment: accepted for publication on Journal of Applied Physic

    Photocatalytic removal of patent blue V dye on Au-TiO2 and Pt-TiO2 catalysts

    Get PDF
    In this work it was studied the efficiency of a photocatalytic process for the removal of patent blue V. This dye is very difficult to remove by conventional treatments such as adsorption or coagulation therefore the photocatalytic process is a very interesting alternative for the removal this dye mainly because it does not require expensive oxidants and it can be carried out at mild temperatures and pressures. In this work it was tested the efficiency of Au-TiO2 and Pt-TiO2 photocatalysts in the Patent blue V removal. The Au-TiO2 catalysts were prepared by two different methods: chemical reduction and photochemical deposition; Pt-TiO2 catalysts were obtained only by photochemical deposition. In the synthesis of the catalysts prepared by photochemical deposition, it was evaluated the influence of some parameters, such as deposition time and the intensity of the light source over the physicochemical properties and photocatalytic activity of the materials obtained. An analysis of the effect of the catalyst dosage and initial patent blue V concentration over the dye degradation efficiency was also attempted. In general, it was observed that the presence of Au or Pt on TiO2 enhances the patent blue V photodegradation; it was found that noble metal particle size and distribution on TiO2 surface are important factors influencing the dye removal. The highest dye degradation was obtained over the Au-TiO2 catalyst prepared by photochemical deposition, using high light intensity and 15 min of deposition time during the synthesis. A discoloration and a total organic carbon (TOC) removal of 93 and 67% respectively, were obtained over this material after 180 min of UV irradiation. These values are higher than that the obtained on S-TiO2 (discoloration and TOC removal of about 25% and 3%, respectively)
    corecore