75 research outputs found

    Induced and endogenous acoustic oscillations in granular faults

    Full text link
    The frictional properties of disordered systems are affected by external perturbations. These perturbations usually weaken the system by reducing the macroscopic friction coefficient. This friction reduction is of particular interest in the case of disordered systems composed of granular particles confined between two plates, as this is a simple model of seismic fault. Indeed, in the geophysical context frictional weakening could explain the unexpected weakness of some faults, as well as earthquake remote triggering. In this manuscript we review recent results concerning the response of confined granular systems to external perturbations, considering the different mechanisms by which the perturbation could weaken a system, the relevance of the frictional reduction to earthquakes, as well as discussing the intriguing scenario whereby the weakening is not monotonic in the perturbation frequency, so that a re-entrant transition is observed, as the system first enters a fluidized state and then returns to a frictional state.Comment: 15 pages, 12 figure

    Synchronized oscillations and acoustic fluidization in confined granular materials

    Full text link
    According to the acoustic fluidization hypothesis, elastic waves at a characteristic frequency form inside seismic faults even in the absence of an external perturbation. These waves are able to generate a normal stress which contrasts the confining pressure and promotes failure. Here, we study the mechanisms responsible for this wave activation via numerical simulations of a granular fault model. We observe the particles belonging to the percolating backbone, which sustains the stress, to perform synchronized oscillations over ellipticlike trajectories in the fault plane. These oscillations occur at the characteristic frequency of acoustic fluidization. As the applied shear stress increases, these oscillations become perpendicular to the fault plane just before the system fails, opposing the confining pressure, consistently with the acoustic fluidization scenario. The same change of orientation can be induced by external perturbations at the acoustic fluidization frequency

    Managerial performance incentives and firm risk during economic expansions and recessions

    Get PDF
    We argue that the relationship between managerial pay-for-performance incentives and risk taking is pro-cyclical. We study the relationship between incentives provided by stock-based compensation and firm risk for US non-financial corporations over the two business cycles between 1992 and 2009. We show that a given level of pay-for-performance incentives results in significantly lower firm risk when the economy is in a downturn. The documented pro-cyclical relationship between incentives and risk taking is consistent with state-dependent risk aversion. Our findings contribute to the literature on the depressive effects of performance incentives on firm risk by documenting the importance of the interaction between performance incentives and risk aversion. © The Authors 2017

    Infections are a very dangerous affair: Enterobiasis and death

    Get PDF
    Background: Enterobiasis or oxyuriasis from Enterobius vermicularis is an infection usually localized in the large bowel and cecum. Generally, the symptoms are characterized by anal itching, and intestinal or nervous disorders. Rarely, it is responsible for death. Methods: A forensic autopsy of a 52-year-old white male inmate who died 5 days after hospitalization was performed. Histological and toxicological analyses were also performed. Results: The death occurred by localization of Enterobius vermicularis in the duodenum and in the proximal ileum, with intestinal haemorrhage, inflammation, and peritonitis documented by histological examination. Conclusion: This is a common infectious disease, and can rarely occur with a fatal outcome, even in advanced populations. The lack of knowledge related to the rarity of death from enterobiasis disease can determine a dangerous concern

    Short-time dynamics of a packing of polyhedral grains under horizontal vibrations

    Full text link
    We analyze the dynamics of a 3D granular packing composed of particles of irregular polyhedral shape confined inside a rectangular box with a retaining wall sub jected to horizontal harmonic forcing. The simulations are performed by means of the contact dynamics method for a broad set of loading parameters. We explore the vibrational dynamics of the packing, the evolution of solid fraction and the scaling of dy- namics with the loading parameters. We show that the motion of the retaining wall is strongly anharmonic as a result of jamming and grain rearrangements. It is found that the mean particle displacement scales with inverse square of frequency, the inverse of the force amplitude and the square of gravity. The short- time compaction rate grows in proportion to frequency up to a characteristic frequency, corresponding to collective particle rearrangements between equilibrium states, and then it declines in inverse proportion to frequency

    High intensity tapping regime in a frustrated lattice gas model of granular compaction

    Full text link
    In the frame of a well established lattice gas model for granular compaction, we investigate the high intensity tapping regime where a pile expands significantly during external excitation. We find that this model shows the same general trends as more sophisticated models based on molecular dynamic type simulations. In particular, a minimum in packing fraction as a function of tapping strength is observed in the reversible branch of an annealed tapping protocol.Comment: 5 pages, 4 figure

    Glassy states in lattice models with many coexisting crystalline phases

    Full text link
    We study the emergence of glassy states after a sudden cooling in lattice models with short range interactions and without any a priori quenched disorder. The glassy state emerges whenever the equilibrium model possesses a sufficient number of coexisting crystalline phases at low temperatures, provided the thermodynamic limit be taken before the infinite time limit. This result is obtained through simulations of the time relaxation of the standard Potts model and some exclusion models equipped with a local stochastic dynamics on a square lattice.Comment: 12 pages, 4 figure

    Universal features of correlated bursty behaviour

    Get PDF
    Inhomogeneous temporal processes, like those appearing in human communications, neuron spike trains, and seismic signals, consist of high-activity bursty intervals alternating with long low-activity periods. In recent studies such bursty behavior has been characterized by a fat-tailed inter-event time distribution, while temporal correlations were measured by the autocorrelation function. However, these characteristic functions are not capable to fully characterize temporally correlated heterogenous behavior. Here we show that the distribution of the number of events in a bursty period serves as a good indicator of the dependencies, leading to the universal observation of power-law distribution in a broad class of phenomena. We find that the correlations in these quite different systems can be commonly interpreted by memory effects and described by a simple phenomenological model, which displays temporal behavior qualitatively similar to that in real systems
    corecore