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Many structural glasses feature static and dynamic mechanical properties that can depend strongly on glass
formation history. The degree of universality of this history dependence and what it is possibly affected by are
largely unexplored. Here we show that the variability of elastic properties of simple computer glasses under
thermal annealing depends strongly on the strength of attractive interactions between the glasses’ constituent
particles—referred to here as glass “stickiness.” We find that in stickier glasses the stiffening of the shear
modulus with thermal annealing is strongly suppressed, while the thermal-annealing-induced softening of the
bulk modulus is enhanced. Our key finding is that the characteristic frequency and density per frequency of soft
quasilocalized modes becomes effectively invariant to annealing in very sticky glasses; the latter are therefore
deemed “thermomechanically inannealable.” The implications of our findings and future research directions are
discussed.

DOI: 10.1103/PhysRevE.103.022606

I. INTRODUCTION

One intriguing feature of structural glasses is the strong
history dependence of their mechanical properties [1–14]. It
has been known since the work of Shi and Falk [15] that plas-
tic strain localization is enhanced, and stress overshoots are
more pronounced, in glasses cooled at lower rates from a melt
prior to their deformation [3,5,8,13]. Other work has shown
that deforming computer glasses under one loading geometry
can significantly alter the subsequent responses of the material
in the same and other loading geometries [16,17]. Advances
in experimental techniques that allow high control over the
precise “fictive temperature” at which a metallic glass falls out
of equilibrium [18] were used to demonstrate that the notch
fracture toughness of the same material can change by more
than a factor of two, depending on its fictive temperature, i.e.,
on its preparation history.

Methodological advances in computational glass physics
have helped to shed considerable light on the aforementioned
history dependence of glasses’ mechanical properties. In par-
ticular, the optimization of polydisperse soft-sphere [19] and
other [20] models with respect to their efficiency under Swap
Monte Carlo dynamics has allowed the creation of glasses
from very deeply supercooled liquids and the systematic study
of those glasses’ mechanical properties as a function of their
preparation history [8,21–23]. These studies and others have
established that a generic feature of computer [24] and lab-
oratory glasses [18] is that their shear modulus G typically
increases with deeper supercooling prior to glass formation;
some observations report a total annealing-induced variation
of G of up to ≈60% in three dimensions [23] (and >70% in
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two [25]). It has also been shown that the relative, sample-
to-sample fluctuations of elastic moduli, shown recently to
control long wavelength wave attenuation rates [26], decrease
by more than a factor of three in well-annealed glasses [22].

Another manifestation of thermal annealing on glasses’
elasticity is seen in the energetic, statistical, and struc-
tural properties of soft, quasilocalized modes (QLMs)
[21,23,24,27–31]. These low-energy excitations were shown
to exist in any structural glass quenched from a melt [32] and
presumably play important roles in dynamic glassy phenom-
ena such as wave attenuation [33], elasto-plasticity [34], aging
dynamics [35], and structural relaxation in equilibrium super-
cooled liquids [36]. Evidence that a subset of these excitations
may constitute the tunneling two-level systems, responsible
for the anomalous thermodynamic and transport properties of
glasses at cryogenic temperatures, has also been put forward
[37].

Several observations have been made that establish a con-
nection between the degree of thermal annealing of glasses
and their featured abundance of QLMs. To the best of our
knowledge, the first observation was made by Schober and
Oligschleger [27], who argued that the relative absence of
soft, quasilocalized vibrational modes in a model glass is
attributed to both their stiffening and overall depletion. This
assertion was further discussed in Ref. [23], where the total
number density of QLMs was demonstrated to following a
Boltzmann-like law with respect to the parent equilibrium
temperature Tp from which the studied glasses were instan-
taneously quenched. In the same work it was shown that the
characteristic frequency of QLMs increases by more than a
factor of two due to strong thermal annealing.

What features of model structural glasses’ interac-
tion potentials control the degree of susceptibility of
statistical-mechanical properties of a glass—in particular its
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macro- and microscopic elastic properties and mechanical
disorder [38]—to thermal annealing? This is precisely the
question we address in the present work, which is the sec-
ond in a series of reports aimed at tracing the effects of
strong, attractive interactions between the constituent parti-
cles of a glass on that glass’s mechanical disorder. In the
first paper [39], we aimed at avoiding thermal annealing ef-
fects on elasticity, in order to cleanly single out the role of
strong attractive interactions in determining glasses’ elastic
properties, mechanical disorder, and stability. In order to com-
pare between different computer glass models on the same
footing, we followed Refs. [22,32] and exploited the high-
parent-temperature plateau of elastic properties featured by
most computer glass models, including those considered in
this work.

Here we show that in a model computer glass in which the
relative strength of pairwise attractive interactions—referred
to here as “glass stickiness”—can be readily tuned [40], the
degree of thermal-annealing-induced variations in glasses’
elastic properties exhibits a strong dependence on glass stick-
iness. In particular, we find that the relative stiffening of
the shear modulus in deeply annealed glasses decreases sub-
stantially upon increasing glass stickiness, while the relative
softening of the bulk modulus increases. We further find that
increasing glass stickiness leads to the indifference of the
characteristic frequency scale associated with soft, quasilo-
calized excitations, of those excitations’ characteristic size,
and of their density per frequency, to thermal annealing. We
refer to this surprising emergent indifference of mechanical
properties to thermal annealing as the thermomechanical inan-
nealability of glasses.

The phenomenon of thermomechanical inannealability is
illustrated within the potential energy landscape picture [41]
by the cartoon displayed in Fig. 1. The potential landscape of
a generic computer glass model—e.g., the extensively studied
Kob-Andersen Binary Lennard-Jones glass former [42]—is
illustrated in Fig. 1(a). In those systems, the characteris-
tic frequency of the glass’s soft nonphoninic quasilocalized
modes—represented by the characteristic curvature of the
landscape about its local minima, and denoted by ω2

g in
Fig. 1(a) and in what follows—is small at high energies and
grows as lower energies are reached; see related discussions
in Refs. [24,43–45].

In contrast with the behavior of generic glass formers de-
scribed above, the potential energy landscape of sticky-sphere
glasses is substantially different. As illustrated in the bottom
panel of Fig. 1, the multidimensional landscape shows almost
no change in its characteristic frequencies (curvatures about
local minima) as one descends to lower energies. Below we
will show that, despite that sticky spheres glass’s potential
energy features, a larger relative variation upon supercooling
compared to glasses with weaker attractive interactions, many
of these glasses’ mechanical properties, including dimension-
less quantifiers of mechanical disorder, are largely indifferent
to descending deep down into the energy landscape.

This work is structured as follows; in Sec. II we introduce
and motivate the choice of the model system employed in our
study and describe how different ensembles of glassy samples
were created. In Sec. III we put forward a scheme that allows
to extract a crossover temperature scale Tco based on the

FIG. 1. Illustration of the concept of thermomechanical inan-
nealability. The top panel depicts the potential energy landscape
(PEL) of a generic glass. In generic glasses the characteristic fre-
quencies associated with local minima increase with decreasing
energy. As we increase the relative strength of attractive forces and
decrease their range (see insets)—namely, we make a “stickier”
glass—the PEL is altered (see bottom panel): characteristic frequen-
cies associated with local minima become largely independent of the
energy.

potential energy per particle of our glass ensembles. The scale
Tco is then used to organize the rest of our data presentations.
Sections IV and V discuss the effect of particle stickiness
on the thermal annealability of macroelastic and microelas-
tic properties, respectively. We summarize our findings and
discuss future research questions in Sec. VI. The definitions
of, and some explanations about, the physical observables
considered in this work can be found in Appendix A.

II. COMPUTER GLASS MODEL AND GLASS ENSEMBLES

In this work we employ a 50:50 binary mixture of “large”
and “small” particles of equal mass m in three dimensions at
fixed volume V . Pairs of particles interact via the Piecewise
Sticky Spheres (PSS) pairwise potential, introduced first in
Ref. [40] and also studied extensively in our companion paper
[39]. The equilibrium-supercooled liquid dynamics of this
model was very recently studied in Ref. [46]. The PSS model
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was chosen for this study since in Ref. [39] it featured the
strongest variation of elastic properties as a function of its key
control parameter, which is described next.

The PSS is a Lennard-Jones-like pairwise potential in
which the repulsive part is identical to the canonical Lennard-

Jones (LJ) potential, but the attractive part is modified such
that it and its first two derivatives with respect to interparticle
distance ri j vanish continuously at a (dimensionless) cutoff
distance xc, the latter serving as a control parameter; the PSS
pairwise potential reads

ϕPSS(ri j ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4ε
[( λi j

ri j

)12 − ( λi j

ri j

)6
]
,

ri j

λi j
< xmin

ε

[
a
( λi j

ri j

)12 − b
( λi j

ri j

)6 +
3∑

�=0
c2�

( ri j

λi j

)2�

]
, xmin � ri j

λi j
< xc

0 ,
ri j

λi j
� xc

, (1)

where ε is a microscopic energy scale, xmin, xc are the (dimen-
sionless) locations of the minimum of the LJ potential and
modified cutoff, respectively, and the length parameters λi j

are expressed in terms of the “small-small” interaction length
λsmall

small, with λ
large
small =1.18λsmall

small and λ
large
large =1.4λsmall

small. The coef-
ficients a, b, {c2�} can be found in Ref. [39]; they are chosen
such that the attractive and repulsive parts of the potential and
two derivatives are continuous at xmin and at xc. The pairwise
potential ϕPSS is plotted in Fig. 2. In what follows, we express
the dimensionless cutoff xc of ϕPSS in terms of xmin =21/6 by
defining rc ≡xc/xmin, for simplicity. rc serves as one of the two
key control parameters in our investigation.

We build ensembles of glassy samples at fixed number
density N/V =0.60(λsmall

small )
−3, using rc =1.1, 1.2, 1.3, and 1.5;

glass configurations were initially equilibrated at various par-
ent temperatures Tp—the second key control parameter in
our investigation—for which the liquids’ equilibrium relax-
ation times (estimated via the stress autocorrelations; see
Fig. 18 in Appendix E) vary over approximately four orders
of magnitude for each rc. Details for the equilibrium parent
temperatures, system, and ensembles sizes appear in Table I.
We have checked and found no signs of crystallization. In
what follows, we report all lengths in terms of the characteris-
tic interparticle distance a0 ≡ (V/N )1/3 and all frequencies in
terms of ω0 ≡cs/a0, where the speed of shear waves is defined

FIG. 2. The Piecewise Sticky Spheres (PSS) pairwise interaction
potential employed in this work. The interaction cutoffs rc—marked
by the color-coded vertical dotted lines—are expressed in terms
of the dimensionless distance xmin =21/6 at which the canonical
Lennard-Jones potential attains a minimum.

as cs ≡
√

G/ρ with ρ ≡mN/V denoting the mass density, and
we notice that ω0, cs and G are all rc- and Tp-dependent.

Importantly, we note that the thermal-annealing-induced
variation percentages of the observables reported in what fol-
lows depend on the depth of supercooling of glasses’ ancestral
equilibrium configurations; here our different glass mod-
els (pertaining to different cutoffs rc) were all supercooled
roughly evenly, at least in terms of their respective equilibrium
liquid dynamics as shown in Fig. 18 in Appendix E. This
roughly even depth of supercooling across models allows us
to meaningfully compare thermal-annealing-induced relative
variations of observables, across the entire parent temperature
range of each glass model, and across ensembles of different
glass models.

III. EXTRACTING A CROSSOVER TEMPERATURE SCALE

In the companion paper [39], we prepared glassy samples
by instantaneously quenching high-temperature equilibrium
liquid states; the equilibrium parent temperatures were chosen
to be at least a factor of four higher than the computer glass
transition temperature Tg, defined here as the temperature at
which the structural relaxation time ∼104τ	, with τ	 repre-
senting a characteristic vibrational timescale. As we shall see
below, and as previously observed [22,47–49], elastic prop-
erties and various dimensionless quantifiers of mechanical
disorder exhibit a plateau above some crossover temperature,
denoted in what follows as Tco. An equal-footing comparison
of elastic properties is possible by considering parent temper-
atures Tp much larger than the crossover temperature Tco.

How should the crossover temperature Tco—with respect to
which we compare different glasses made by quenching states
equilibrated at various parent temperatures Tp—be defined?
Defining a physically relevant temperature scale in super-
cooled liquids is not a trivial task; see, e.g., discussions in
Refs. [50,51]. Here we introduce a simple, broadly applicable,
and evidently useful scheme to define Tco, which is based on
the Tp-dependence of the ensemble average energy per particle
u(Tp)≡U (Tp)/N of our computer glasses. The raw data for
u(Tp), expressed in terms of simulational units, are shown in
Fig. 15 in Appendix B.

The scheme is illustrated in Fig. 3; we show [u(Tp) −
u(Tco)]/Tco versus Tp/Tco, namely, the difference between the
inherent state energy per particle u(Tp) and the linearly inter-
polated energy per particle u(Tco), rescaled by the crossover
temperature Tco and plotted against the rescaled parent tem-

022606-3



KARINA GONZÁLEZ-LÓPEZ et al. PHYSICAL REVIEW E 103, 022606 (2021)

TABLE I. Equilibrium parent temperatures, for various cutoffs from the SS model. The system and ensemble size shown in the last two
columns apply for all parent temperatures listed.

rc Tp N n

1.1 6.00,4.00,3.00,2.00,1.50,1.20,1.00,0.88,0.80,0.76,0.73 3000 9200
1.2 4.00,2.60,1.80,1.30,1.00,0.91,0.85,0.80,0.77 3000 9200
1.3 4.00,2.60,1.80,1.30,1.15,1.00,0.91,0.85,0.80,0.77 3000 9200
1.5 0.76,0.72,0.69 3000 9200
1.5 2.60,1.80,1.30,1.00,0.91,0.85,0.80 10 000 3000

perature Tp/Tco. This is done by choosing the crossover
temperatures Tco for each model, such that the collapse across
all models is optimal for Tp <Tco. The quasiuniversal form
of the shifted and rescaled u(Tp) is also shown in Fig. 3 to
be followed by three additional computer glass models: the
canonical Kob-Andersen Binary Lennard-Jones model [42],
a Hertzian soft-spheres glass [32], and a polydisperse, inverse
power-law glass [22,23], whose respective extracted crossover
temperatures Tco can be found in Ref. [52].

Interestingly, despite a good collapse of u(Tp) at Tp <Tco

for several different computer glass models, there seems to
be no obvious connection between the extracted crossover
temperatures Tco and the supercooled dynamics of the parent
equilibrium states from which the glasses were quenched.
This is to say that, for example, the dimensionless structural
relaxation time of the rc =1.1, Tp/Tco ≈0.52 liquids is roughly
equal to that of the rc =1.5, Tp/Tco ≈0.78 liquids (see the
lowest-Tp correlation functions in Figs. 18(a) and 18(d)], im-
plying that the dimensionless relaxation time is not a universal
function of Tp/Tco. Consequently, the dimensionless glass

FIG. 3. Glass potential energy per particle u(Tp), shifted by the
interpolated u(Tco), and rescaled by the crossover temperature Tco.
The inset shows the extracted crossover temperatures Tco for the
computer glasses studied in this work.

transition temperature Tg/Tco is not expected to be universal
either.

Another interesting observation, discussed further below,
is that even though the crossover temperature Tco is a de-
creasing function of the interaction potential cutoff rc, the
absolute variation of the rescaled and shifted glass energy
[u(Tp)−u(Tco)]/Tco for Tp <Tco appears to be larger for the
stickier glasses, with the smaller cutoffs. This is to say that
the largest variation of glass energy per particle—in terms
of Tco—is seen for the rc =1.1 glasses, in contrast with the
Tp-dependence of many of those glasses’ elastic properties, as
shown in what follows.

An obvious limitation of the scheme described above is that
it allows the extraction of crossover temperatures only if u(Tp)
is available for a few computer glass models that all follow
the same quasiuniversal form below Tp, which is not a priori
known. However, a very close estimate of the extracted Tco—
as seen in the inset of Fig. 3—can be obtained by analyzing
the Tp-dependent elastic moduli of a single computer glass
model, as explained and demonstrated in Appendix C.

IV. EFFECT OF THERMAL ANNEALING
ON MACROELASTICITY

Having established how to extract a crossover temperature
scale Tco for our different rc-ensembles, we next review our
measurements of macroelastic observables, namely, elastic
moduli. Precise definitions of the studied observables can be
found in Appendix A.

Elastic moduli of glasses are known to depend on the
equilibrium parent temperature Tp from which those glasses
were quenched [7,22,24,25]. Here we assess the degree of
this dependence under variations of the relative strength of
attractions (glass “stickiness”), tuned in turn by varying the
interaction cutoff rc of our sticky-sphere glasses, as explained
in Fig. 2. In Fig. 4(a) we plot the sample-to-sample average
athermal shear modulus G, rescaled by its high-Tp plateau,
denoted as G∞. We see that increasing glass stickiness leads
to the suppression of the relative thermal-annealing-induced
variation in G: for the rc =1.5 glasses G increases by slightly
more than 20%, whereas the rc =1.1 glasses feature a much
milder variation, of slightly less than 5%—a factor of more
than four smaller relative thermal-annealing-induced variation
compared to the rc =1.5 glasses. This increasing indifference
to thermal annealing by increasing glass stickiness is the first
example of thermomechanical inannealability presented in
this work.
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FIG. 4. (a) Sample-to-sample average shear modulus G, rescaled by its high-temperature plateau value G∞, and plotted against Tp/Tco.
(b) same as (a) for the sample-to-sample mean bulk modulus K .

Interestingly, the ensemble-average athermal bulk modulus
K (Tp), plotted in Fig. 4(b) after rescaling by its high-Tp limit
K∞ shows two opposite trends compared to G(Tp); first, K (Tp)
is a decreasing function of the parent temperature Tp, whereas
G(Tp) is an increasing function of Tp. The observed decrease
of K with annealing appears to be a common feature of some
simple glass models [21,22], but not of laboratory glasses
[6,29] that are typically annealed at constant pressure. Second,
the largest relative decrease in K (Tp)—of roughly 10%—is
featured by the stickiest among our glasses, the rc =1.1 en-
semble, while the largest relative increase in G(Tp) is featured
by the rc =1.5 glasses.

Figure 5 shows the fraction of the nonaffine term Gna/G
from the total shear modulus G (see definitions in Ap-
pendix A and related work in the context of the unjamming
transition in Ref. [53]). As seen for many mechanical ob-
servables, also in this case we find that Gna/G features a
high-Tp plateau and a downwards dip at roughly Tco. In-
terestingly, the high-Tp plateau of Gna/G depends strongly
on glass stickiness, varying by more than a factor of two
across the entire rc-range considered. At the same time, the

FIG. 5. The shear modulus G can be decomposed into an affine
part G−Gna, and a nonaffine part Gna that features an explicit depen-
dence on the vibrational spectrum of a glass; see precise definitions in
Appendix A. Here we show the fraction Gna/G vs parent temperature
Tp for all rc-ensembles.

relative Tp-induced variation of Gna/G is similar across the
different studied degrees of glass stickiness, ranging roughly
between 40% and 50%.

Finally, we show in Fig. 6(a) the sample-to-sample average
Poisson’s ratio ν ≡ (3 − 2G/K )/(6 + 2G/K ), plotted against
Tp, for all rc-ensembles. We find that while the typical ν values
depend quite significantly on rc (as we have also shown in
Ref. [39]), the relative variation of ν across the entire sampled
Tp range, as seen in Fig. 6(b), does not differ much between
the highest and lowest rc-ensembles. Clearly, the rescaled
curves ν/ν∞ do not collapse when plotted against Tp/Tco.

FIG. 6. (a) Poisson’s ratio ν is plotted against the parent temper-
ature Tp, for all rc-ensembles. (b) The circled data points represent
ν∞, used for rescaling ν.
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FIG. 7. The vDOS D(ω), calculated for low and high parent
temperatures Tp, in our rc =1.2 systems (left) and for our rc =1.5 sys-
tems (right). We find that the prefactor Ag of the ω4 scaling depends
very weakly on Tp for moderate particle stickiness (rc =1.2) and
shows a much more pronounced dependence on thermal annealing
for weak particle stickiness (rc =1.5).

V. EFFECT OF THERMAL ANNEALING ON
MICROSCOPIC ELASTICITY

The vibrational density of states (vDOS) associated with
nonphononic soft quasilocalized modes in structural glasses
has been long ago predicted [54,55] and recently shown [28]
to universally follow a quartic law, namely,

D(ω)=Agω
4 , (2)

independent of spatial dimension [56], glass formation
protocol [21,23,24], or form of microscopic interactions
[32]. The prefactor Ag has dimensions of [frequency]−5,
and its physical essence has been discussed at length in
Refs. [23,24]. In those works it is asserted that Ag(Tp)∼
N (Tp) ω−5

g (Tp), where N (Tp) and ωg(Tp) represent the
parent-temperature-dependent density per particle and char-
acteristic frequency of soft quasilocalized modes (QLMs),
respectively.

Previous investigations have shown that thermal
annealing of computer glasses can affect the statistical,
energetic, and structural properties of their embedded
soft QLMs [21–24,27,28,30]. Here we investigate
how the susceptibility of those aforementioned prop-
erties to thermal annealing changes by varying glass
stickiness.

A. Density per frequency of QLMs

We first study the thermal-annealing susceptibility of the
prefactor Ag(Tp), as measured in our different-rc glass ensem-
bles. In Fig. 7 we show examples of the low-frequency vDOS
of our computer glasses. In particular, we plot D(ω) against
ω/ω0, for the highest and lowest parent temperatures, and for
two cutoffs: rc =1.2 [Fig. 7(a)] and rc =1.5 [Fig. 7(b)]. We
recall that ω0 ≡cs/a0, where cs is the speed of shear waves,
and a0 an interparticle distance. Superimposed dashed and
dotted lines are fits to Eq. (2), which demonstrate how Ag is
extracted from the vDOS data.

Comparing the vDOS of the rc =1.2 and the rc =1.5
glasses, we clearly see that in the former case Ag is nearly
independent of Tp, while in the latter case a measurable dif-

FIG. 8. Prefactors Ag of the universal nonphononic vDOS
D(ω)=Agω

4, made dimensionless by scaling by ω5
0, measured

across and plotted against parent temperatures Tp, for our different
rc-ensembles.

ference is seen between the high and low Tp data. A more
comprehensive presentation of the dependence of Ag on Tp

is presented in Fig. 8, where we plot Ag against Tp for all
rc’s. In the companion paper [39] we showed that Ag is very
sensitive to increasing glass stickiness; that sensitivity can be
seen here too by examining the large Tp plateaus of Ag for
different rc’s.

Consistent with the behavior of other observable shown
above, Ag becomes a weaker function of Tp as glass sticki-
ness is increased, i.e., the glasses become thermomechanically
inannealable. We note, importantly, that with conventional
molecular dynamics methods we have employed, we are un-
able to supercool our model systems very deeply. In contrast,
using the Swap Monte Carlo method [19], one is able to
achieve very deep supercooling of polydisperse systems, lead-
ing in some cases to a thousand-fold decrease in Ag, as shown
in Refs. [23,39]. It is clearly important to establish in the
future whether the thermomechanical inannealability we ob-
serve here in sticky glasses persists under deeper supercooling
of their parent equilibrium states, as allowed by Swap Monte
Carlo.

B. Characteristic frequency of QLMs

The second microelastic observable we study is the afore-
mentioned characteristic frequency ωg(Tp) of QLMs. It has
been suggested in Refs. [23–25] that the characteristic fre-
quency of the displacement response to locally imposed
force dipoles is a good representation of QLMs’ character-
istic frequency ωg. Here we follow those suggestions; we
measure

ω(i j)
g ≡

√
uuu(i j) · M · uuu(i j)

uuu(i j) · uuu(i j)
=

√
ddd (i j) · M−1 · ddd (i j)

ddd (i j) · M−2 · ddd (i j) , (3)

for a large, random set of pairs of interacting particles i, j.
Here uuu(i j) =M−1 ·ddd (i j) is the displacement response to a local
force dipole ddd (i j) imposed on the i, j pair (as illustrated, e.g.,
in Ref. [25]), and M= ∂2U

∂xxx∂xxx is the Hessian matrix of the
potential energy U (xxx) that depends on particle coordinates

022606-6



MECHANICAL DISORDER OF STICKY-SPHERE GLASSES. … PHYSICAL REVIEW E 103, 022606 (2021)

FIG. 9. Distributions p(ω(i j)
g ) of the dipole-response frequencies ω(i j)

g [cf. Eq. (3)] vs the dimensionless ω(i j)
g /ω0, for (a) our stickiest glasses

(rc =1.1) and (b) for the least sticky glasses (rc =1.5), measured for their respective highest and lowest parent temperature Tp as indicated by
the legends.

xxx. Finally, in addition to some examples of the distributions
p(ω(i j)

g ), we also report

ωg ≡ 〈
ω(i j)

g

〉
i j
, (4)

where 〈•〉i j denotes an average taken over interacting-pair and
glass samples. We note that in the companion paper [39], we
followed a different route to extracting ωg; a short discussion
about—and direct comparison between—the two methods is
shown in Appendix D.

In Fig. 9 we show the distributions p(ω(i j)
g ) measured

for our stickiest (rc =1.1) and least sticky (rc =1.5) glasses,
for their lowest and highest simulated parent temperatures,
as can be seen in the figure legends. Similarly to the low-
frequency spectra reported in Fig. 7, here too we find that in
the stickier glass the change in p(ω(i j)

g ) between the highest
and lowest parent temperatures Tp is minor, manifesting that
system’s thermomechanical inannealability. In contrast, the
distributions p(ω(i j)

g ) for rc =1.5 glasses show a measurable
difference in the amplitude of their low-frequency tails, sup-
porting further that nonsticky glasses are thermomechanically
annealable. We can also see that the relative width of p(ω(i j)

g )
changes substantially between the rc =1.1 and the rc =1.5
glasses, indicating that increasing glass stickiness leads to
micromechanical ordering. Similar trends were reported in
Ref. [25].

We next show our measurements of the means ωg(Tp)
in Fig. 10; the reported averages are taken over an im-
mense number of interactions (∼106), thus the data are very
smooth. Here we find the same trends as seen above for
the Tp-dependence of p(ω(i j)

g and for Ag(Tp): the stickier
glasses show a pronounced thermomechanical inannealabil-
ity; namely, they feature almost no thermal-annealing-induced
variation in ωg/ω0. In particular, the rc =1.1 ensemble shows
a total of only 3% change in ωg/ω0 between its highest and
lowest Tp’s. This should be contrasted with the variation of
more than 30% seen for the rc =1.5 glasses—a factor of
at least 10 larger relative variation, compared to the total
variation of ωg(Tp) in the rc =1.1 glasses, across the entire
simulated Tp range.

C. Localization properties of QLMs

It has been previously shown [23,30,31] that the core-size
of QLMs decreases with strong supercooling of their embed-
ding glasses’ ancestral equilibrium states. Here we assess the
core size of QLMs via their participation ratio e, defined given
a mode ψ as

e ≡ (
∑

i ψi · ψi )
2

N
∑

i(ψi · ψi )2
, (5)

FIG. 10. (a) Characteristic frequency ωg of QLMs, made dimen-
sionless by rescaling by ω0 ≡cs/a0, and plotted against the parent
temperature Tp. (b) The same as (a), but rescaled by the high-Tp

plateau ω∞.
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FIG. 11. Scaled mean low-frequency plateau of the participation
ratio, Ne0, plotted against the parent temperature Tp; here again we
observe that increasing glass stickiness leads to thermomechanical
inannealability. For a visual example of how Ne0 is estimated; see
Fig. 14 in Appendix A 2.

where ψi denotes the đ-dimensional vector of a mode’s
Cartesian components associated with the ith particle. One
generally expects e∼1/N for (quasi)localized modes [28],
and e∼1 for extended modes (such as phonons). It has
been shown [30,31,37] that the participation ratio of vi-
brational modes at frequency ω plateaus to a value e0 in
the low-frequency, ∼ω4 scaling regime of the vDOS. Since
the modes populating the scaling regime are quasilocalized,
an estimation of QLMs core size—in terms of number of
particles—is obtained via the product Ne0. The extraction of
e0 from participation ratio data is demonstrated in Fig. 14 in
Appendix A 2.

Our estimations for Ne0 are plotted against parent tempera-
ture Tg in Fig. 11, for all rc-glass ensembles. As expected, we
see that QLMs core size generally decrease with decreasing
parent temperature Tp, consistent with the aforementioned
previous observations. However, the interesting observa-
tion here is again the apparent substantial indifference of
QLMs’ core sizes to thermal annealing in stickier glasses,
as shown above to occur for several other observables as
well.

D. How are Ag, ωg, and Ne0 related?

In the preceding subsections we have seen that the vDOS
prefactor Ag, the characteristic frequency ωg of QLMs, and
QLMs core size Ne0 all show thermomechanical inanneala-
bility as glass stickiness is increased. The consistency among
these microelastic observables supports that they are related,
as previously suggested and reviewed next.

In Ref. [23] it was established that the core size ξg of QLMs
is related to the latter’s characteristic frequency ωg via

ξg = 2πcs/ωg, (6)

where cs denotes the speed of shear waves. Since Ne0 should
approximately represent QLMs’ core size, we expect

Ne0 ∼ (ξg/a0)3 ∼ (ωg/ω0)−3, (7)

while recalling that a0 ≡ (V/N )1/3 is an interparticle distance,
and that ω0 ≡cs/a0 is a characteristic frequency. Equation (7)

is tested in Fig. 12(a). The agreement is acceptable; the ob-
served noise may stem from statistical errors in estimations of
e0 (see Appendix A 2 for details) or from a possible intrinsic
error in associating the scaled participation ratio Ne0 with
QLMs’ core size [57], or both.

We next recall that in Refs. [23,24] it is asserted that

Ag ∼ Nω−5
g , (8)

where N represents the density per particle of QLMs. With
the exception of the stickiest glasses corresponding to rc =1.1,
we find that Ag is entirely determined by ωg, implying that N
is mostly Tp-independent and quasiuniversal. The quasiuniver-
sality of N was also observed and discussed in the companion
paper [39].

Our results are shown in Fig. 12(b); had N been universal
and Tp-independent, one would simply expect Ag ∼ω−5

g . We
find that this relation approximately holds for all data points,
with the very noticeable exception of the rc =1.1 glasses,
for which Ag 	ω−5

g , as also seen and discussed in Ref. [39].
Thermo-mechanical inannealability is seen here as the dra-
matically reduced spread of the data over the ωg axis upon
increasing glasses stickiness.

VI. SUMMARY AND OUTLOOK

In this work we present several manifestations of a
phenomenon we have coined “thermomechanical inanneala-
bility.” We find that, under some forms of our sticky-sphere
glasses’ interaction potential, a large number of micro- and
macroelastic properties of glasses are seen to become largely
indifferent to deeper supercooling of those glasses’ ances-
tral equilibrium states. We demonstrated this indifference
in the shear modulus G, as well as in several quantifiers
of the statistical-mechanical properties of soft, nonphononic
quasilocalized modes, including their size, characteristic fre-
quency, and density per frequency.

What is the degree of thermomechanical inannealabil-
ity of common laboratory glasses? Experimental data (e.g.,
Refs. [6,14,18,29,58,59]) clearly indicate that macroelastic
properties of metallic glasses can feature large susceptibili-
ties to thermal annealing. In contrast, it was shown, e.g., in
Ref. [29] that the shear modulus of a Ce68Al10Cu20Fe2 metal-
lic glass changes only by about 2% after annealing it below
Tg for 150 h. Interestingly, in Ref. [29] the same glass was
also shown to be very brittle, as were (thermomechanically
inannealable) sticky-sphere computer glasses in Ref. [60]—
using the same model employed here. More work is required
in order to understand the extent to which the trends we have
identified in simple computer glasses, as employed in this
work, are relevant to laboratory glasses.

As mentioned in Sec. V A, here we employed conventional
molecular dynamics simulations in order to supercool our
parent configurations before casting them into glassy solids.
Running-time constraints do not allow one to reach very deep
supercooling with these methods. It will be very interesting to
observe whether the thermomechanical inannealability seen
here persists in deeply annealed glasses made using the Swap
Monte Carlo algorithm [19] and to examine how it may be
affected by polydispersity.
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FIG. 12. (a) Scaled participation ratio Ne0 plotted against the rescaled characteristic frequency ωg/ω0. Each point represents a different
parent temperature Tp. The dashed line represents the relation Ne0 ∼ (ωg/ω0 )−3. (b) Dimensionless vDOS prefactor Agω

5
0 plotted against the

dimensionless characteristic frequency ωg/ω0 of QLMs.

As mentioned above, here and in many other simulational
works on different computer glasses (e.g., Refs. [21,22]) it
has been shown that K (Tp) is a decreasing function of Tp,
while it appears to be uncommon to observe a decreasing
bulk modulus with thermal annealing in laboratory glasses.
We speculate that this is a consequence of considering con-
stant volume annealing, as done here, which usually leads
to a decreasing bulk modulus upon thermal annealing, or
constant pressure annealing, as typically done in experiments,
that leads to the increase of the bulk modulus upon thermal
annealing. Future research should resolve whether particular
details of interaction potentials can affect the sign of dK/dTp

under constant pressure annealing.
In this work and in the companion paper [39] we find

that tuning the interaction potential can lead to effects that
resemble those of annealing on elastic properties of glasses,
as also pointed out in Ref. [60]. Future work should carefully
resolve the similarities and differences between stabilization
of glasses by thermal annealing, and stabilization of glasses
by tailoring the form of interaction potentials.

Finally, our findings suggest the existence of intrinsically
brittle glasses, i.e., whose embedded defects (QLMs) are very
stiff and rare, independent of those glasses’ formation his-
tory. We do not, however, find evidence for the existence
of intrinsically ductile glasses that are both defect-rich and
thermomechanically inannealable. Our results suggest instead
that thermomechanical inannealability and intrinsic brittle-
ness share a common origin, related to glass stickiness. We
leave revealing that origin to future work.
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APPENDIX A: DEFINITIONS OF OBSERVABLES

In this Appendix we provide precise definitions of the
physical observables focused on in this study. We divide the
observables to macroscopic and microscopic ones in the next
subsections.

1. Macroscopic observables

We start with athermal (T =0) elastic moduli [61]; the
shear modulus G is defined as

G ≡ 1

V

d2U

dγ 2
=

∂2U
∂γ 2 − ∂2U

∂γ ∂xxx · M−1 · ∂2U
∂xxx∂γ

V
, (A1)

where xxx denotes particles’ coordinates, M≡ ∂2U
∂xxx∂xxx is the

Hessian matrix of the potential U , and γ is a shear-strain
parameter that parameterizes the imposed affine simple shear
(in the x-y plane) transformation of coordinates xxx→ H (γ ) · xxx
with

H (γ ) =
⎛
⎝1 γ 0

0 1 0
0 0 1

⎞
⎠. (A2)

We also study the nonaffine term Gna of the shear modulus,
defined as

Gna ≡
∂2U
∂γ ∂xxx · M−1 · ∂2U

∂xxx∂γ

V
. (A3)

The bulk modulus K is defined as

K ≡ −1
-d

d p

dη
=

∂2U
∂η2 − ∂U

∂η
− ∂2U

∂η∂xxx · M−1 · ∂2U
∂xxx∂η

V -d
, (A4)

where -d is the dimension of space, p≡− 1
V -d

dU
dη

is the
pressure, and η is an expansive-strain parameter that pa-
rameterizes the imposed affine expansive transformation of
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FIG. 13. We consider two dimensionless forms for our glasses’
pressure: p/K and p/p0 (see text for the definition of p0); both in-
dicate only minor variations between the our different rc ensembles.
See further details in Appendix A 1.

coordinates xxx→ H (η) · xxx as

H (η) =
⎛
⎝eη 0 0

0 eη 0
0 0 eη

⎞
⎠. (A5)

The Poisson’s ratio ν of a glass in three dimensions is defined
as

ν ≡ 3K − 2G

6K + 2G
= 3 − 2G/K

6 + 2G/K
. (A6)

In order to properly compare the pressure between differ-
ent glasses, we consider here to dimensionless forms of the
pressure. For the first one, we write the pressure as

p = 1

V -d

∑
fi j>0

fi jri j − 1

V -d

∑
fi j<0

(− fi j )ri j ≡ p+ − p−. (A7)

The above decomposition of the pressure is used to define a
characteristic scale p0 ≡ p+ + p− with respect to which the
pressure can be assessed. For the second dimensionless form
of the pressure, we consider the ratio p/K , where K is the
bulk modulus. The two forms of the dimensionless pressure
are shown for our sticky sphere glasses in Fig. 13.

2. Microscopic observables

The vibrational density of states (vDOS) is defined as

D(ω) = 1

N

〈∑
�

δ(ω − ω�)

〉
, (A8)

FIG. 14. Scatter plot of the scaled participation ratio Ne vs fre-
quency ω, for our sticky-sphere glasses with rc =1.5 and Tp/Tco ≈
3.0.

where 〈•〉 denotes an ensemble average, and ω� is the vibra-
tional frequency associated with the vibrational mode ψ(�) that
together solve the eigenvalue equation

M · ψ(�) = ω2
�ψ

(�). (A9)

The degree of localization of vibrational modes ψ is con-
ventionally quantified using the participation ratio e, defined
as

e ≡ (
∑

i ψi · ψi )
2

N
∑

i(ψi · ψi )2
, (A10)

where ψi denotes the -d-dimensional vector of a mode’s
Cartesian components associated with the ith particle. One
generally expects e∼1/N for localized modes and e∼1 for
extended modes. We always find that e plateaus at low
frequency, as shown, for example, in Fig. 14 and also in
Refs. [30,31,37].

To extract the low-frequency plateau of e, we set a thresh-
old frequency—marked by the vertical dashed line in Fig. 14,
for each glass ensemble, and take the mean over all data
points whose frequencies are lower than the chosen threshold,
represented in Fig. 14 by the horizontal dashed line. This
estimation is in good agreement with the running average of
Ne0 at the plateau.

APPENDIX B: GLASS POTENTIAL ENERGY
PER PARTICLE

In Fig. 3 of Sec. III we show the shifted and rescaled
potential energy per particle u(Tp)≡U (Tp)/N of sticky sphere
glasses, in addition to those of other popular glass models.
For readers’ reference, in Fig. 15 we present the raw po-
tential energy data and the interpolated energies u(Tco) used
in the definition of the onset temperature Ton; see details in
Sec. III.

APPENDIX C: DEFINING THE CROSSOVER
TEMPERATURE VIA Tp-DEPENDENT ELASTIC MODULI

In Sec. III we showed how the potential energy per par-
ticle u(Tp) of different glass models can be collapsed onto
a master curve by a proper identification of, and rescaling
by, the crossover temperatures Tco for each model system.
The disadvantage of this approach is that it is not useful
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FIG. 15. Potential energy per particle, expressed in terms of sim-
ulational units, for all studied parent temperatures Tp, and different
glass stickiness as obtained by tuning the interaction cutoff rc. The
empty stars represent the interpolated energies u(Tco); see discussion
in Sec. III.

if only one function u(Tp) (for a single glass model) is
available.

Here we offer an alternative definition, demonstrated in
Fig. 16. It amounts to constructing a linear extrapolating of
the low-Tp quasilinear regime of the shear to bulk moduli ratio
G/K , towards higher Tp’s. An example of this extrapolation
is represented in Fig. 16 by the nearly vertical dashed line.
Our alternative definition of the crossover temperature Tco is
given by the intersection of the extrapolated G/K with the
high-Tp limit G∞/K∞. In the inset of Fig. 16 we compare
the crossover temperatures Tco defined via the two approaches,
the one explained here and the one introduced in Sec. III, and
find a very good agreement between the two across all models
considered. We reiterate that details about the Kob-Andersen
Binary Lennard-Jones (KABLJ) model, the Hertzian spheres
glass, and the polydisperse inverse-power-law soft sphere
glass (poly-IPL) can be found in Refs. [22,32,42], respec-
tively.

APPENDIX D: EXTRACTING QLMS’ CHARACTERISTIC
FREQUENCY SCALE

In the companion paper [39] we extracted the characteristic
frequency ωg of QLMs by (1) measuring the typical length
ξg that characterizes the response of the glass to local force
dipoles and (2) using the relation

ωg = 2πcs/ξg, (D1)

established in Ref. [23], where cs stands for the speed of
shear waves. Since this scheme requires large system sizes
(we used N � 250 K in Ref. [39]), it is impractical once very

FIG. 16. Shear-to-Bulk moduli ratio G/K , rescaled by their
high-Tp limit G∞/K∞, and plotted against the rescaled parent tem-
perature Tp/Tco. Here Tco is defined as the intersection of the linearly
extrapolated G/K—marked, for example, by the nearly vertical
dashed line—with the high-Tp limit. The inset compares between the
crossover temperatures extracted as shown here and those extracted
by the u(Tp) collapse shown in Fig. 3.

long simulations are required in order to equilibrate states
at very low parent temperatures. In Fig. 17 we show a good
agreement between ωg extracted via the scheme employed in
this work (cf. Sec. V B), and that extracted as explained in this
Appendix.

FIG. 17. Comparison of the estimation of ωg obtained as ex-
plained in Sec. V B, to that obtained in Ref. [39] by following the
scheme explained in this Appendix, for all rc-glass ensembles (we
consider the highest Tp’s).
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FIG. 18. Stress autocorrelation functions for our model glass formers with different pair interaction cutoffs rc.

APPENDIX E: SUPERCOOLED-LIQUID DYNAMICS

In this Appendix we report the supercooled relaxational dynamics of our different glass forming models, defined by the pair
interaction cutoff rc as explained in Sec. II of the main text. We monitor the stress autocorrelation function c(t ) defined as

c(t ) = V σ (0)σ (t )/T, (E1)

where • denotes a time average, and σ =V −1∂U/∂γ with γ denoting a shear strain parameter as defined in Appendix A 1.
Figure 18 shows the stress correlations for different cutoffs rc. We reiterate that a comprehensive study of the dynamical
properties of our sticky sphere glasses was put forward in Ref. [46].
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