160 research outputs found

    Critical point calculation for binary mixtures of symmetric non-additive hard disks

    Full text link
    We have calculated the values of critical packing fractions for the mixtures of symmetric non-additive hard disks. An interesting feature of the model is the fact that the internal energy is zero and the phase transitions are entropically driven. A cluster algorithm for Monte Carlo simulations in a semigrand ensemble was used. The finite size scaling analysis was employed to compute the critical packing fractions for infinite systems with high accuracy for a range of non-additivity parameters wider than in the previous studies.Comment: 8 pages, 4 figure

    Mesoscopic theory for size- and charge- asymmetric ionic systems. I. Case of extreme asymmetry

    Full text link
    A mesoscopic theory for the primitive model of ionic systems is developed for arbitrary size, λ=σ+/σ\lambda=\sigma_+/\sigma_-, and charge, Z=e+/eZ=e_+/|e_-|, asymmetry. Our theory is an extension of the theory we developed earlier for the restricted primitive model. The case of extreme asymmetries λ\lambda\to\infty and ZZ \to\infty is studied in some detail in a mean-field approximation. The phase diagram and correlation functions are obtained in the asymptotic regime λ\lambda\to\infty and ZZ \to\infty, and for infinite dilution of the larger ions (volume fraction np1/Zn_p\sim 1/Z or less). We find a coexistence between a very dilute 'gas' phase and a crystalline phase in which the macroions form a bcc structure with the lattice constant 3.6σ+\approx 3.6\sigma_+. Such coexistence was observed experimentally in deionized aqueous solutions of highly charged colloidal particles

    Phase behavior of hard spheres confined between parallel hard plates: Manipulation of colloidal crystal structures by confinement

    Full text link
    We study the phase behavior of hard spheres confined between two parallel hard plates using extensive computer simulations. We determine the full equilibrium phase diagram for arbitrary densities and plate separations from one to five hard-sphere diameters using free energy calculations. We find a first-order fluid-solid transition, which corresponds to either capillary freezing or melting depending on the plate separation. The coexisting solid phase consists of crystalline layers with either triangular or square symmetry. Increasing the plate separation, we find a sequence of crystal structures from n triangular to (n+1) square to (n+1) triangular, where n is the number of crystal layers, in agreement with experiments on colloids. At high densities, the transition between square to triangular phases are intervened by intermediate structures, e.g., prism, buckled, and rhombic phases.Comment: 9 pages, 4 figures. Accepted for publication in J. Phys.: Condens. Matte

    Field theory for size- and charge asymmetric primitive model of electrolytes. Mean-field stability analysis and pretransitional effects

    Full text link
    The primitive model of ionic systems is investigated within a field-theoretic description for the whole range of size-, \lambda, and charge, Z, ratios of the two ionic species. Two order parameters (OP) are identified, and their relations to physically relevant quantities are described for various values of \lambda and Z. Instabilities of the disordered phase associated with the two OP's are determined in the mean-field approximation. A gas-liquid separation occurs for any Z and \lambda different from 1. In addition, an instability with respect to various types of periodic ordering of the two kinds of ions is found

    Surface critical behavior of driven diffusive systems with open boundaries

    Full text link
    Using field theoretic renormalization group methods we study the critical behavior of a driven diffusive system near a boundary perpendicular to the driving force. The boundary acts as a particle reservoir which is necessary to maintain the critical particle density in the bulk. The scaling behavior of correlation and response functions is governed by a new exponent eta_1 which is related to the anomalous scaling dimension of the chemical potential of the boundary. The new exponent and a universal amplitude ratio for the density profile are calculated at first order in epsilon = 5-d. Some of our results are checked by computer simulations.Comment: 10 pages ReVTeX, 6 figures include

    Daily Precipitation over Southern Africa: A New Resource for Climate Studies

    Get PDF
    This paper describes a new high-resolution multiplatform multisensor satellite rainfall product for southern Africa covering the period 1993–2002. The microwave infrared rainfall algorithm (MIRA) employed to generate the rainfall estimates combines high spatial and temporal resolution Meteosat infrared data with infrequent Special Sensor Microwave Imager (SSM/I) overpasses. A transfer function relating Meteosat thermal infrared cloud brightness temperatures to SSM/I rainfall estimates is derived using collocated data from the two instruments and then applied to the full coverage of the Meteosat data. An extensive continental-scale validation against synoptic station data of both the daily MIRA precipitation product and a normalized geostationary IR-only Geostationary Operational Environmental Satellite (GOES) precipitation index (GPI) demonstrates a consistent advantage using the former over the latter for rain delineation. Potential uses for the resulting high-resolution daily rainfall dataset are discussed

    Thermodynamics of Dipolar Chain Systems

    Full text link
    The thermodynamics of a quantum system of layers containing perpendicularly oriented dipolar molecules is studied within an oscillator approximation for both bosonic and fermionic species. The system is assumed to be built from chains with one molecule in each layer. We consider the effects of the intralayer repulsion and quantum statistical requirements in systems with more than one chain. Specifically, we consider the case of two chains and solve the problem analytically within the harmonic Hamiltonian approach which is accurate for large dipole moments. The case of three chains is calculated numerically. Our findings indicate that thermodynamic observables, such as the heat capacity, can be used to probe the signatures of the intralayer interaction between chains. This should be relevant for near future experiments on polar molecules with strong dipole moments.Comment: 15 pages, 5 figures, final versio

    High pressure route to generate magnetic monopole dimers in spin ice

    Get PDF
    The gas of magnetic monopoles in spin ice is governed by one key parameter: the monopole chemical potential. A significant variation of this parameter could access hitherto undiscovered magnetic phenomena arising from monopole correlations, as observed in the analogous electrical Coulomb gas, like monopole dimerization, critical phase separation, or charge ordering. However, all known spin ices have values of chemical potential imposed by their structure and chemistry that place them deeply within the weakly correlated regime, where none of these interesting phenomena occur. Here we use high-pressure synthesis to create a new monopole host, Dy2Ge2O7, with a radically altered chemical potential that stabilizes a large fraction of monopole dimers. The system is found to be ideally described by the classic Debye–Huckel–Bjerrum theory of charge correlations. We thus show how to tune the monopole chemical potential in spin ice and how to access the diverse collective properties of magnetic monopoles

    Critical adsorption near edges

    Get PDF
    Symmetry breaking surface fields give rise to nontrivial and long-ranged order parameter profiles for critical systems such as fluids, alloys or magnets confined to wedges. We discuss the properties of the corresponding universal scaling functions of the order parameter profile and the two-point correlation function and determine the critical exponents eta_parallel and eta_perpendicular for the so-called normal transition.Comment: 22 pages, 5 figures, accepted for publication in PR
    corecore