37 research outputs found

    Exploring the Potential of Portable Spectroscopic Techniques for the Biochemical Characterization of Roots in Shallow Landslides

    Get PDF
    In the present work, Raman, Fourier Transform Infrared (FTIR) and elemental Laser-Induced Breakdown Spectroscopy (LIBS) spectroscopic techniques were used for the assessment of the influence of plant root composition towards shallow landslide occurrence. For this purpose, analyses were directly carried out on root samples collected from chestnut forests of the Garfagnana basin (northern Apennines, Italy) in different areas devoid and affected by shallow landslides due to frequent heavy rain events. Results have highlighted a correlation between the biochemical constituents of wooden roots and the sampling areas. In particular, different content of lignin/cellulose, as well as minerals nutrients, have been detected in roots collected where shallow landslides occurred, with respect to more stable areas. The results achieved are in line with the scientific literature which has demonstrated the link between the chemical composition of roots with their mechanical properties and, in particular, tensile strength and cohesion. Finally, portable spectroscopic instrumentations were employed without the need for either any sample preparation for Raman and LIBS spectroscopy or minimal preparation for FTIR spectroscopy. This novel and fast approach has allowed achieving information on the content of the major constituents of the root cell, such as cellulose and lignin, as well as their mineral nutrients. This approach could be reasonably included among the vegetation protection actions towards instability, as well as for the evaluation of shallow landslide susceptibility, combining geological, vegetational and biochemical parameters with sustainability

    Light scattering measurements for quantifying biological cell concentration: an optimization of opto-geometric parameters

    Get PDF
    An experimental study was carried out, aimed at optimizing the optical/geometrical configuration for measuring the concentration of biological cells by means of static light scattering measurements. A LED-based optoelectronic setup making use of optical fibers was experimented, as the precursor of a low-cost device to be integrated in instrumentation for cytometry. Two biological sample types were considered as test samples of the most popular analyses – cervical cells and urine, respectively. The most suitable wavelengths and detecting angles were identified, and calibration curves were calculated

    Optical spectral signatures of liquids by means of fiber optic technology for product and quality parameter identification

    Get PDF
    Absorption spectroscopy in the wide 200-1700 nm spectral range is carried out by means of optical fiber instrumentation to achieve a digital mapping of liquids for the prediction of important quality parameters. Extra virgin olive oils from Italy and lubricant oils from turbines with different degrees of degradation were considered as ‘case studies’. The spectral data were processed by means of multivariate analysis so as to obtain a correlation to quality parameters. In practice, the wide range absorption spectra were considered as an optical signature of the liquids from which to extract product quality information. The optical signatures of extra virgin olive oils were used to predict the content of the most important fatty acids. The optical signatures of lubricant oils were used to predict the concentration of the most important parameters for indicating the oil’s degree of degradation, such as TAN, JOAP anti-wear index, and water content

    Visible and near-infrared absorption spectroscopy by an integrating sphere and optical fibers for quantifying and discriminating the adulteration of extra virgin olive oil from Tuscany

    No full text
    Because of its high price, extra virgin olive oil is frequently targeted for adulteration with lower quality oils. This paper presents an innovative optical technique capable of quantifying and discriminating the adulteration of extra virgin olive oil caused by lower-grade olive oils. An original set-up for diffuse-light absorption spectroscopy in the wide 400\u20131,700 nm spectral range was experimented. It made use of an integrating sphere containing the oil sample and of optical fibers for illumination and detection; it provided intrinsically scattering-free absorption spectrosco- py measurements. This set-up was used to collect spectro-scopic fingerprints of authentic extra virgin olive oils from the Italian Tuscany region, adulterated by different concentrations of olive-pomace oil, refined olive oil, deodorized olive oil, and refined olive-pomace oil. Then, a straightforward multivariate processing of spectroscopic data based on principal component analysis and linear discriminant analysis was applied which was successfully capable of predicting the fraction of adulterant in the mixture, and of discriminating its type. The results achieved by means of optical spectroscopy were compared with the analysis of fatty acids, which was carried out by standard gas chromatography

    Quality monitoring of extra-virgin olive oil using an optical sensor

    No full text
    An optical sensor for the detection of olive oil aroma is presented. It is capable of distinguishing different ageing levels of extra-virgin olive oils, and shows effective potential for achieving a non destructive olfactory perception of oil ageing. The sensor is an optical scanner, fitted with an array of metalloporphyrin-based sensors. The scanner provides exposure of the sensors to the flow of the oil vapor being tested, and their sequential spectral interrogation. Spectral data are then processed using chemometric methodologies
    corecore