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Abstract — A selection of top-quality extra virgin olive oils with 
excellent nutraceutic properties was artificially adulterated by 
means of lower-grade olive oils commonly used in commercial 
counterfeits. The oil sample set was analyzed by means of 
diffuse-light absorption spectroscopy performed in the wide 400-
1700 nm spectral range. A setup based on optical fiber 
technology was experimented, which made use of an optical 
fiber supercontinuum source. The spectroscopic library was 
processed by means of a Partial Least Squares regression for 
quantifying the adulterant concentration, followed by a 
Principal Component Analysis and Linear Discriminant Analysis 
for identifying the type of adulterant. 

I. PROTECTING EXTRA VIRGIN OLIVE OIL 

Extra virgin olive oil (EVOO) is the only vegetable oil that 
is consumed as it is – freshly extracted from the fruit. Thanks 
to its balanced taste and flavored aroma, EVOO is capable of 
enhancing the most popular gastronomic recipes and is thus 
considered the chef’s gold. EVOO also offers highly 
beneficial health effects, thanks to both its high content of 
monounsaturated fatty acids, vitamins, and polyphenols – the 
antioxidant substances.  

EVOO, besides containing the highest levels of antioxidants, 
has the highest amount of monounsaturated fatty acids. It is a 
“healing fat”, since it controls the “bad” LDL cholesterol 
levels while raising the “good” HDL ones [1,2]. Studies have 
shown that people who consumed 25 ml (about 2 

tablespoons) of EVOO daily for 1 week presented less 
oxidation of LDL cholesterol and higher levels of antioxidant 
compounds in the blood [3], and, more generally, that EVOO 
is a panacea of the entire cardiovascular system [4].  

Because of the time-consuming agronomical practices used 
for EVOO production, and the low production efficiency – 
frequently lower than 20% as oil yield – the price of EVOO is 
high, especially compared with that of other vegetable oils. 
Consequently, EVOO is prone to adulteration with cheaper 
oils in order to increase profits. In addition to an economic 
burden, EVOO adulteration is detrimental if consumers react 
by buying other cooking fats or dressings, thinking that 
EVOO cannot be trusted. The negative implications on 
consumer confidence are even worse than the economic ones. 
Lastly, EVOO protection measures also imply the product 
area conservation, as far as landscape, tourism, and job 
preservation are concerned.  

While the European Commission regulations are indicating 
the characteristics of olive oil types, and are suggesting the 
methods of analysis [5], a lot of research is currently carried 
out, in order to experiment innovative techniques for 
authenticating extra virgin olive oils and predicting potential 
frauds. 

Numerous methodologies exist for EVOO authentication, 
both for adulteration detection and quantification. 
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Chromatographic, thermal, nuclear magnetic resonance 
techniques are frequently used, as well as dielectric 
spectroscopy [6-9]. They are mostly suitable for laboratory 
use, since the instrumentation is cumbersome and some 
treatments of the analyzed sample are required. Optical 
spectroscopy is also frequently used and sometimes preferred 
because it allows a rapid and non-destructive analysis and 
requires minimum or no sample preparation. Infrared, mid-
infrared, and fluorescence spectroscopic techniques have 
been proposed, as well as absorption spectroscopy in the 
ultraviolet, visible or near-infrared spectral ranges [10-13]. 
These optical techniques are usually combined with 
chemometric methods for spectroscopic data processing, thus 
providing an excellent EVOO authentication [14]. However, 
none of the absorption spectroscopy techniques experimented 
so far takes into account the intrinsic turbidity of the olive oil, 
which can considerably impair absorption measurements 
because of the unavoidable scattering effects produced by 
suspended particles. 

This paper shows an absorption spectroscopy experiment 
carried out in the wide 400-1700 nm spectral range by means 
of optical fiber technology to predict the adulteration of 
authentic EVOOs produced in the Italian region of Tuscany, 
caused by lower-grade olive oils. Olive-pomace oil (OPO), 
refined olive-pomace oil (ROPO), refined olive oil (ROO), 
and deodorized olive oil (DOO) were considered as 
adulterants. While the detection of EVOO adulteration caused 
by OPO, ROPO, and ROO has been previously achieved by 
means of absorption spectroscopy [15], we innovatively 
tested the adulteration caused by DOO, an emerging 
adulterant, the detection of which is hard to achieve by means 
of conventional techniques.  
 

II. DIFFUSE-LIGHT ABSORPTION SPECTROSCOPY 

Diffuse-light absorption spectroscopy makes use of an 
integrating sphere that contains the sample under test. The 
source and the detector are butt-coupled to the sphere. Almost 
all the light impinging on the sphere surface is diffusely 
reflected, and the detector can be placed anywhere in the 
sphere in order to gather the average flux [16,17]. By 
inserting an absorbing medium in the cavity, a reduction of 
the radiance in the sphere occurs. The reduction is related to 
the absorption of the medium and to its volume, and is 
independent of non-absorbing objects within it, such as 
suspended scattering particles. 

Efficient diffuse-light measurements need bright sources. 
A conventional deuterium/halogen lamp is enough, provided 
that it is butt-coupled to the integrating sphere. However, 
when optical fibers are needed for a better geometrical 
versatility of the measuring system, conventional lamps 
provide poor and insufficient light intensity. 

Recently, the revolutionary advent of compact, high 
brightness supercontinuum fiber optic sources has changed the 
perspectives of optical spectroscopy [18,19]. This innovative 
source is made of a holey optical fiber, typically a photonic 

crystal fiber, which is pumped by a high-power nanosecond or 
femtosecond laser. The bright light generated by the holey 
fiber over a wide spectral range can easily be coupled to a 
conventional optical fiber and guided to the input port of an 
integrating sphere. Another port of the sphere can 
accommodate an optical fiber coupled to a spectrometric 
detector, so as to achieve an efficient setup for diffuse-light 
absorption spectroscopy, as shown in Figure 1. 

Commercially-available components were used for the 
practical implementation of the experimental setup [20]. The 
Fianium-SC400 fiber optic supercontinuum source was used 
for illumination: it emits 4 Watts throughout the entire 415-
1800 nm spectral range. The Instrument System-Spectro 320 
fiber optic spectrometer was used as detector, which scanned 
the wide 400-1700 nm spectral range with a resolution of 1.37 
nm. The Labsphere-LMS100 cavity was used as a diffusing 
sphere, the ports of which were equipped by means of fiber 
optic connectors for coupling to both the source and the 
detector. The olive oil sample under test was contained in a 
glass vial having a volume of 32 cm3. This setup was 
previously used for lubricant oil analysis – it allowed for a 
successful spectral fingerprinting of the lubricant oil and for 
predicting functional parameters and wear indicators [21]. 

 

 

Figure 1.  Setup for diffuse-light absorption spectroscopy by means of 
optical fiber technology. 

III. THE COLLECTION OF AUTHENTIC EXTRA VIRGIN 
OLIVE OILS AND ADULTERANTS 

Authentic EVOOs were four different types of oils 
collected in Tuscany, which were produced according to local 
traditions around the area of Grosseto. The lower-grade olive 
oils – OPO, ROO, ROPO, and DOO – were provided by the 
Università degli Studi di Udine. Table I summarizes the 
codes used for identifying the various oil types. 

Four series of EVOO-adulterant mixtures were prepared by 
spiking each authentic EVOO with 5%, 25%, 50%, 75%, and 
95% w/w of adulterant. They were used for calibration 
procedures. Also, replica mixtures of EVOOs with 25%, 
50%, 75% w/w of adulterants were prepared for validation 
purposes. The entire collection of measured oils consisted of 
136 samples, 88 for calibration and 48 for validation, 
respectively. 

Figure 2 and 3 show the measured diffuse-light absorption 
spectra of all authentic EVOOs and adulterants, respectively. 
Their mixtures show intermediate spectra: as an example, 
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Figure 4 and 5 show the O1 EVOO adulterated by means of 
two different adulterants, OPO and DOO, respectively, 
providing very similar (O1F1 mix) or highly different (O1F4 
mix) spectral signatures. 

A multivariate processing of the spectroscopic data allowed 
for predicting the fraction and the type of adulterant. All data 
processing were carried out in Matlab® code, by means of 
customized programs. 

TABLE I.  CODES OF EXPERIMENTED AUTHENTIC EXTRA VIRGIN OLIVE 
OILS AND ADULTERANTS. 

Code Type of oil 
O1 EVOO from Tuscany 
O2 EVOO from Tuscany 
O3 EVOO from Tuscany 
O4 EVOO from Tuscany 
F1 OPO 
F2 ROO 
F4 DOO 
F5 ROPO 

 

IV. PREDICTING THE ADULTERANT FRACTION 

As a first processing, the spectra were smoothed by means of 
Savitsky-Golay algorithm, employing a 2nd degree 
polynomial and a smoothing window of 15 points (30 nm). 
Then, the prediction of the adulterant fraction in the mixtures 
was achieved by using a multivariate analysis method called 
Partial Least Squares regression (PLS) [22]. PLS looks for a 
limited number of PLS “factors” (PF) which are linear 
combinations of the original predictors. These new variables 
are mutually orthogonal (thus uncorrelated) and have the 
maximum possible covariance with the target variable, 
among all possible combinations of the original predictors. 

The optimal number of factors was assessed by testing each 
PLS model on the validation set and by choosing that 
minimizing the RMSEP (Root Mean Square Error of 
Prediction). Two other parameters were evaluated in order to 
assess the goodness of the fit: the RMSEC (Root Mean 
Square Error of Calibration) and the determination 
coefficient, R2. RMSEC is, like RMSEP, an estimation of the 
“expected” prediction error, but is evaluated on the 
calibration set. R2 is the squared correlation coefficients 
between predicted and reference values, for the calibration 
set; thus the fit is as better as this value is closer to 1. 

Table II summarizes the values of these parameters for each 
EVOO-adulterant mixture, together with the chosen number 
of PF (# PF). Note that all mixtures involving F4 needed 2 
PFs for achieving the best fit. Indeed, the values of R2 are 
very good. The best prediction is obtained for O3 EVOO 
adulterated by means of ROO (F2), showing R2=0.997 and 
RMSEP=0.02. The worse prediction, which is still very good, 
is obtained for O2 EVOO adulterated again by means of 
ROO (F2), showing R2=0.933 and RMSEP=0.06. 
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Figure 2.  Diffuse-light absorption spectra of authentic EVOOs. 
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Figure 3.  Diffuse-light absorption spectra of adulterants. 
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Figure 4.  Diffuse-light absorption spectra of O1F1 mix – example of very 
similar spectral signatures. 
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Figure 5.  Diffuse-light absorption spectra of O1F4 mix – example of highly 
different spectral signatures. 
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V. DISCRIMINATING THE ADULTERANT TYPE 

The previous section showed how to predict the fraction of 
adulterant when the adulterant type is known a priori. 
However, in practice, the type of adulterant is usually 
unknown. Therefore we investigated how to discriminate 
among the different types of adulterants by means of 
multivariate calibration and classification methods [23]. 

The Principal Component Analysis (PCA) was firstly applied. 
For each EVOO, the spectra of pure adulterants and of 
calibration mixtures were considered, thus taking into 
account 24 samples. 

Figure 6 shows the results of PCA processing obtained for O1 
EVOO; similar results were obtained for the other EVOOs. 
This score plot highlights that DOO (the F4 adulterant) can 
be easily distinguished along the PC1 axis. In fact, PC1 is 
linked to the average absorbance in the 500÷900 nm range, 
where DOO absorbance is higher and broader than any other 
adulterant. 

Then, for a better discrimination of the other three 
adulterants, the Linear Discriminant Analysis (LDA) was 
applied. Since overfitting is likely with LDA direct 
processing of large variable sets, like spectra, a two-step PCA 
+ LDA model was considered. For each EVOO, calibration 
and validation sets were created. The calibration set was 
made by the spectra of pure OPO, ROO and ROPO 
adulterants, and of the relative calibration mixtures (total 18 
samples), while the validation set was made by the validation 
mixtures of the same adulterants (total 9 samples). PCA was 
applied to the calibration set, showing that two PCs only were 
sufficient to obtain explained variances of 96% or higher in 
any case. LDA was then performed on the PCA score matrix, 
obtaining two Discrimination Functions (DF). Finally, the 
decision boundaries separating the three classes of adulterants 
were calculated. 

Figure 7 and 8 show the results of PCA + LDA processing for 
discriminating OPO, ROO and ROPO (F1, F2 and F5) in O1 
EVOO; similar figures were obtained for the other EVOOs. 
Empty and filled dots represent the calibration and validation 
samples, respectively. Figure 7 shows the discriminating 
map, where labels indicating the adulterant percentage in the 
mixture are added, while adulterants are simply identified by 
their code. Figure 8 shows the discriminating map also 
including the discriminating boundaries.  

As expected, the best discrimination among the adulterants is 
achieved with high adulterant concentrations, and the dots 
converge towards a point where the pure EVOO should be. 
Note that the spectrum of authentic EVOO was not 
considered in the LDA processing, for not introducing a 
fourth class populated by a single element, which contrasts 
with LDA principles. 
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Figure 6.  Results of PCA processing obtained for O1 EVOO. 
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Figure 7.  Results of PCA + LDA processing for discriminating OPO, ROO 
and ROPO (F1, F2 and F5) in O1 EVOO: discriminating map with labels 

indicating the adulterant percentage in the mixture. 
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Figure 8.  Results of PCA + LDA processing for discriminating OPO, ROO 
and ROPO (F1, F2 and F5) in O1 EVOO: discriminating map with 

boundaries. 
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TABLE II.  SUMMARY OF PARAMETERS FOR PREDICTING THE FRACTION 
OF ADULTERANT. 

EVOO-
adulterant Mix # PF RMSEC RMSEP R2 

O1F1 1 0.09 0.05 0.947 
O1F2 1 0.06 0.07 0.975 
O1F4 2 0.07 0.05 0.971 
O1F5 1 0.07 0.13 0.964 
O2F1 2 0.03 0.06 0.996 
O2F2 1 0.01 0.06 0.933 
O2F4 2 0.07 0.06 0.969 
O2F5 2 0.02 0.08 0.997 
O3F1 2 0.02 0.05 0.996 
O3F2 2 0.02 0.02 0.997 
O3F4 2 0.05 0.04 0.985 
O3F5 1 0.10 0.10 0.932 
O4F1 1 0.10 0.03 0.926 
O4F2 1 0.07 0.07 0.966 
O4F4 2 0.07 0.06 0.968 
O4F5 2 0.04 0.08 0.990 

 

VI. PERSPECTIVES 

Diffuse-light absorption spectroscopy performed in the 400-
1700 nm spectral range, combined with a multivariate 
processing of spectroscopic data, have demonstrated the 
capability of predicting the adulteration of concentration of 
diverse lower-grade olive oils which are frequently used as 
adulterants of authentic EVOOs produced in Tuscany, a 
centrally located Italian region. Being scattering-independent, 
this technique can be used for EVOO analysis during the 
entire shelf-life of the product. 

To the best of our knowledge we have demonstrated for the 
first time that optical spectroscopy can be successfully used 
to identify and quantify the fraction of DOO in authentic 
EVOO. 

Verifying the authenticity of EVOOs is just one of the many 
other potential applications that diffuse-light absorption 
spectroscopy has, especially in combination with a suitable 
processing of the spectroscopic data. Other types of 
expensive foodstuffs can be authenticated, such as bio-juices, 
honeys, alcoholic beverages, as well as many other liquids, 
the most promising of which can be dietary supplements 
based on herbs and naturals cosmetics. 
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