294 research outputs found

    Earth Satellite Population Instability: Underscoring the Need for Debris Mitigation

    Get PDF
    A recent study by NASA indicates that the implementation of international orbital debris mitigation measures alone will not prevent a significant increase in the artificial Earth satellite population, beginning in the second half of this century. Whereas the focus of the aerospace community for the past 25 years has been on the curtailment of the generation of long-lived orbital debris, active remediation of the current orbital debris population should now be reconsidered to help preserve near-Earth space for future generations. In particular, we show in this paper that even if launch operations were to cease today, the population of space debris would continue to grow. Further, proposed remediation techniques do not appear to offer a viable solution. We therefore recommend that, while the aerospace community maintains the current debris-limiting mission regulations and postmission disposal procedures, future emphasis should be placed on finding new remediation technologies for solving this growing problem. Since the launch of Sputnik 1, space activities have created an orbital debris environment that poses increasing impact risks to existing space systems, including human space flight and robotic missions (1, 2). Currently, more than 9,000 Earth orbiting man-made objects (including many breakup fragments), with a combined mass exceeding 5 million kilograms, are tracked by the US Space Surveillance Network and maintained in the US satellite catalog (3-5). Three accidental collisions between cataloged satellites during the period from late 1991 to early 2005 have already been documented (6), although fortunately none resulted in the creation of large, trackable debris clouds. Several studies conducted during 1991-2001 demonstrated, with assumed future launch rates, the unintended growth potential of the Earth satellite population, resulting from random, accidental collisions among resident space objects (7-13). In some low Earth orbit (LEO) altitude regimes where the number density of satellites is above a critical spatial density, the production rate of new satellites (i.e., debris) due to collisions exceeds the loss of objects due to orbital decay. NASA s evolutionary satellite population model LEGEND (LEO-to-GEO Environment Debris model), developed by the Orbital Debris Program Office at the NASA Lyndon B. Johnson Space Center, is a high fidelity three-dimensional physical model that is capable of simulating the historical satellite environment, as well as the evolution of future debris populations (14, 15). The subject study assumed no rocket bodies and spacecraft were launched after December 2004, and no future disposal maneuvers were allowed for existing spacecraft, few of which currently have such a capability. The rate of satellite explosions would naturally decrease to zero within a few decades as the current satellite population ages. The LEGEND future projection adopts a Monte Carlo approach to simulate future on-orbit explosions and collisions. Within a given projection time step, once the explosion probability is estimated for an intact object, a random number is drawn and compared with the probability to determine if an explosion would occur. A similar procedure is applied to collisions for each pair of target and projectile involved within the same time step. Due to the nature of the Monte Carlo process, multiple projection runs must be performed and analyzed before one can draw reliable and meaningful conclusions from the outcome. A total of fifty, 200-year future projection Monte Carlo simulations were executed and evaluated (16)

    The Characteristics and Consequences of the Break-up of the Fengyun-1C Spacecraft

    Get PDF
    The intentional break-up of the Fengyun-1C spacecraft on 11 January 2007 via hypervelocity collision with a ballistic object created the most severe artificial debris cloud in Earth orbit since the beginning of space exploration. More than 900 debris on the order of 10 cm or greater in size have been identified by the U.S. Space Surveillance Network (SSN). The majority of these debris reside in long-lived orbits. The NASA Orbital Debris Program Office has conducted a thorough examination of the nature of the Fengyun-1C debris cloud, using SSN data for larger debris and special Haystack radar observations for smaller debris. These data have been compared with the NASA standard satellite break-up model for collisions, and the results are presented in this paper. The orbital longevity of the debris have also been evaluated for both small and large debris. The consequent long-term spatial density effects on the low Earth orbit (LEO) regime are then described. Finally, collision probabilities between the Fengyun-1C debris cloud and the resident space object population of 1 January 2007 have been calculated. The potential effect on the growth of the near-Earth satellite population is presented

    Rapid and efficient generation of regulatory T cells to commensal antigens in the periphery

    Get PDF
    SummaryCommensal bacteria shape the colonic regulatory T (Treg) cell population required for intestinal tolerance. However, little is known about this process. Here, we use the transfer of naive commensal-reactive transgenic T cells expressing colonic Treg T cell receptors (TCRs) to study peripheral Treg (pTreg) cell development in normal hosts. We found that T cells were activated primarily in the distal mesenteric lymph node. Treg cell induction was rapid, generating >40% Foxp3+ cells 1 week after transfer. Contrary to prior reports, Foxp3+ cells underwent the most cell divisions, demonstrating that pTreg cell generation can be the dominant outcome from naive T cell activation. Moreover, Notch2-dependent, but not Batf3-dependent, dendritic cells were involved in Treg cell selection. Finally, neither deletion of the conserved nucleotide sequence 1 (CNS1) region in Foxp3 nor blockade of TGF-β (transforming growth factor-β)-receptor signaling completely abrogated Foxp3 induction. Thus, these data show that pTreg cell selection to commensal bacteria is rapid, is robust, and may be specified by TGF-β-independent signals

    The ννγ\nu \nu \gamma Amplitude in an External Homogeneous Electromagnetic Field

    Full text link
    Neutrino-photon interactions in the presence of an external homogeneous constant electromagnetic field are studied. The ννγ\nu \nu \gamma amplitude is calculated in an electromagnetic field of the general type, when the two field invariants are nonzero.Comment: 7 pages, 1 figur

    Photon-Neutrino Interactions in Magnetic Field through Neutrino Magnetic Moment

    Get PDF
    We study the neutrino-photon processes like γγ→ννˉ\gamma\gamma\to\nu\bar{\nu} in the presence of uniform external magnetic field for the case when neutrinos can couple to the electromagnetic field directly through their dipole magnetic moment and obtain the stellar energy loss. The process would be of special relevance in astrophysical situations where standard left-handed neutrinos are trapped and the right handed neutrinos produced through the spin flip interaction induced by neutrino magnetic moment alone can freely stream out.Comment: LaTex2e file, 9 page

    Airway microbiota-host interactions regulate secretory leukocyte protease inhibitor levels and influence allergic airway inflammation

    Get PDF
    Homeostatic mucosal immune responses are fine-tuned by naturally evolved interactions with native microbes, and integrating these relationships into experimental models can provide new insights into human diseases. Here, we leverage a murine-adapted airway microbe, Bordetella pseudohinzii (Bph), to investigate how chronic colonization impacts mucosal immunity and the development of allergic airway inflammation (AAI). Colonization with Bph induces the differentiation of interleukin-17A (IL-17A)-secreting T-helper cells that aid in controlling bacterial abundance. Bph colonization protects from AAI and is associated with increased production of secretory leukocyte protease inhibitor (SLPI), an antimicrobial peptide with anti-inflammatory properties. These findings are additionally supported by clinical data showing that higher levels of upper respiratory SLPI correlate both with greater asthma control and the presence of Haemophilus, a bacterial genus associated with AAI. We propose that SLPI could be used as a biomarker of beneficial host-commensal relationships in the airway
    • …
    corecore