3 research outputs found

    Nutrient cycling in ectomycorrhizal legume-dominated forest in Korup National Park, Cameroon

    Get PDF
    Patterns and rates of nutrient input to the forest floor in litterfall, throughfall and stemflow were investigated in plots of low and high abundance of ectomycorrhizal species. The aim of the study was to examine the comparative advantage of the ectomycorrhizal species in nutrient acquisition and cycling on nutrient-poor soils in Korup. Litterfall was similar in both forests with annual estimates of 9.00 and 8.33 t ha-1 yr-1 for LEM and HEM forests respectively. Litterfall distribution followed a mono-modal pattern, with peaks in the dry season in both forests and the HEM forest showing stronger seasonality. The concentrations N, K and Ca in total litterfall were higher in the LEM forest while those of P and Mg were higher in the HEM forest. The bulk of nutrients in total litterfall was in leaf litter with the reproductive fractions having the highest concentrations of nutrients. Ectomycorrhizal species showed lesser internal redistribution of nutrients than non-ectomycorrhizal species which resulted in their higher leaf litter concentrations of nutrients. Breakdown of litter was relatively faster in the LEM forest with an annual decomposition constant (KL) of 3.21 compared to 2.43 for the HEM forest. The reproductive fractions had relatively higher annual decomposition constants of 8.20 and 4.27 in the LEM and HEM forests respectively compared to the other fractions. The overall element mobility in decomposing leaf litter was similar in both forests and in the following order: Mg>K>Ca>P>N. Mineralization of N, P and K in the decomposing leaf litter was similar in both forests and higher in the HEM forest for Mg and Ca. Throughfall was 96.6% and 92.4%, and stemflow 1.5% and 2.2%, of gross rainfall in LEM and HEM forests respectively. Considerable amounts of Ca, Mg and P were brought to the forest canopy in gross rainfall (24-45% of total input through this route) with higher amounts of K and Ca leached from plant parts by the rainwater. The amounts of P, K and Ca in stemflow and throughfall were of the same magnitude in both forests with the enhancement of N slightly higher in the LEM forest and Mg in the HEM forest

    Plant reproductive phenology following selective logging in a semideciduous tropical forest in the East Region of Cameroon

    Get PDF
    Objective: Changing forest composition and structure caused by selective logging may affect forest phenology either alone or in combination with other environmental factors. The present study aims to analyze the phenological pattern of some exploitable timber tree species in two forest types.Methodology and Results: Eleven economically important tree species were selected for monitoring at three DBH size classes using the crown density method originally devised by Koelmeyer (1959). Quantitative monthly data were collected from September 2011 to December 2014 for the timing, duration and frequency of flowering, and fruiting. A total of 58 individuals were observed in both forest types. There was a significant difference between forest types and species for flowering (p ≤ 0.001) and fruiting (p ≤ 0.001). However, there was no significant difference in flowering and fruiting between individuals of the same species in both forest types. Flowering occurred during the light wet season and fruiting during the heavy wet season to ensure the availability of seeds to germinate into seedlings.Conclusions and application of findings: Phenology was mainly constrained by the biotic determinants of phenology. However while the determinants of phenology are intact in the unlogged forest types, they are destabilized by selective logging causing an alteration in plant species. Thus, activities that are specifically designed to enrich selectively logged sites are necessary in order to promote the natural regeneration of timber species after selective logging.Keywords: Forest type, Flowering, Fruiting, Plant size, Proximate factors, Ultimate factor

    Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks

    Get PDF
    Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mg ha-1) at spatial scales ranging from 5 to 250 m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial "dilution" bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise. © Author(s) 2014
    corecore