282 research outputs found

    Debugging Mappings between Biomedical Ontologies: Preliminary Results from the NCBO BioPortal Mapping Repository

    Get PDF
    The ability to provide semantic mappings between multiple large biomedical ontologies is considered as a very important, albeit labor-intensive and error-prone task. To facilitate such a process, several approaches for collaborative ontology mapping building and sharing have been proposed in the recent past. However, despite the improvements in community-wide mappings development, more often the mapping rules are redundant, incoherent, and at times, incorrect. In this paper, we present an approach for identifying such “erroneous mappings” using Distributed Description Logics. Specifically, we illustrate how logical reasoning can be used to discover semantic inconsistencies caused by erroneous mappings, and provide preliminary results of experiments based on the National Center for Biomedical Ontology BioPortal mapping repository

    AlignFlow: Cycle Consistent Learning from Multiple Domains via Normalizing Flows

    Full text link
    Given datasets from multiple domains, a key challenge is to efficiently exploit these data sources for modeling a target domain. Variants of this problem have been studied in many contexts, such as cross-domain translation and domain adaptation. We propose AlignFlow, a generative modeling framework that models each domain via a normalizing flow. The use of normalizing flows allows for a) flexibility in specifying learning objectives via adversarial training, maximum likelihood estimation, or a hybrid of the two methods; and b) learning and exact inference of a shared representation in the latent space of the generative model. We derive a uniform set of conditions under which AlignFlow is marginally-consistent for the different learning objectives. Furthermore, we show that AlignFlow guarantees exact cycle consistency in mapping datapoints from a source domain to target and back to the source domain. Empirically, AlignFlow outperforms relevant baselines on image-to-image translation and unsupervised domain adaptation and can be used to simultaneously interpolate across the various domains using the learned representation.Comment: AAAI 202

    LexOWL: A Bridge from LexGrid to OWL

    Get PDF
    The Lexical Grid project is an on-going community driven initiative that provides a common terminology model to represent multiple vocabulary and ontology sources as well as a scalable and robust API for accessing such information. In order to add more powerful functionalities to the existing infrastructure and align LexGrid more closely with various Semantic Web technologies, we introduce the LexOWL project for representing the ontologies modeled within the LexGrid environment in OWL (Web Ontology Language). The crux of this effort is to create a “bridge” that functionally connects the LexBIG (a LexGrid API) and the OWL API (an interface that implements OWL) seamlessly. In this paper, we discuss the key aspects of designing and implementing the LexOWL bridge. We compared LexOWL with other OWL converting tools and conclude that LexOWL provides an OWL mapping and converting tool with well-defined interoperability for information in the biomedical domain

    The National COVID Cohort Collaborative: Clinical Characterization and Early Severity Prediction [preprint]

    Get PDF
    Background: The majority of U.S. reports of COVID-19 clinical characteristics, disease course, and treatments are from single health systems or focused on one domain. Here we report the creation of the National COVID Cohort Collaborative (N3C), a centralized, harmonized, high-granularity electronic health record repository that is the largest, most representative U.S. cohort of COVID-19 cases and controls to date. This multi-center dataset supports robust evidence-based development of predictive and diagnostic tools and informs critical care and policy. Methods and Findings: In a retrospective cohort study of 1,926,526 patients from 34 medical centers nationwide, we stratified patients using a World Health Organization COVID-19 severity scale and demographics; we then evaluated differences between groups over time using multivariable logistic regression. We established vital signs and laboratory values among COVID-19 patients with different severities, providing the foundation for predictive analytics. The cohort included 174,568 adults with severe acute respiratory syndrome associated with SARS-CoV-2 (PCR \u3e99% or antigen Conclusions: This is the first description of an ongoing longitudinal observational study of patients seen in diverse clinical settings and geographical regions and is the largest COVID-19 cohort in the United States. Such data are the foundation for ML models that can be the basis for generalizable clinical decision support tools. The N3C Data Enclave is unique in providing transparent, reproducible, easily shared, versioned, and fully auditable data and analytic provenance for national-scale patient-level EHR data. The N3C is built for intensive ML analyses by academic, industry, and citizen scientists internationally. Many observational correlations can inform trial designs and care guidelines for this new disease

    LexOWL: A Bridge from LexGrid to OWL

    Get PDF
    The Lexical Grid project is an on-going community driven initiative that provides a common terminology model to represent multiple vocabulary and ontology sources as well as a scalable and robust API for accessing such information. In order to add more powerful functionalities to the existing infrastructure and align LexGrid more closely with various Semantic Web technologies, we introduce the LexOWL project for representing the ontologies modeled within the LexGrid environment in OWL (Web Ontology Language). The crux of this effort is to create a “bridge” that functionally connects the LexBIG (a LexGrid API) and the OWL API (an interface that implements OWL) seamlessly. In this paper, we discuss the key aspects of designing and implementing the LexOWL bridge. We compared LexOWL with other OWL converting tools and conclude that LexOWL provides an OWL mapping and converting tool with well-defined interoperability for information in the biomedical domain

    New Horizons in Brazilian Contemporary Music: Grupo Novo Horizonte de São Paulo, 1988-99

    Get PDF
    Brazil's foremost ensemble of the late twentieth century, Grupo Novo Horizonte de São Paulo, transformed Brazilian contemporary music by cultivating a new mixed-chamber repertory and giving sustained support to a generation of emerging composers. That this cosmopolitan group took, then outgrew, the Pierrot ensemble as its cornerstone signals the medium it forged: a localized, evolving spectacle with a richly internationalist heritage. This article offers a panoramic view of the musical, intercultural and historical contexts that underpin Grupo Novo Horizonte's practices and legacy. Analysing landmark works by Sílvio Ferraz, Harry Crowl and others allows us to draw further connections between the group, the Brazilianness of late twentieth-century compositional aesthetic, and the realities of contemporary classical music-making in Brazil

    A Genome-Wide Association Study of Red Blood Cell Traits Using the Electronic Medical Record

    Get PDF
    The Electronic Medical Record (EMR) is a potential source for high throughput phenotyping to conduct genome-wide association studies (GWAS), including those of medically relevant quantitative traits. We describe use of the Mayo Clinic EMR to conduct a GWAS of red blood cell (RBC) traits in a cohort of patients with peripheral arterial disease (PAD) and controls without PAD.Results for hemoglobin level, hematocrit, RBC count, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration were extracted from the EMR from January 1994 to September 2009. Out of 35,159 RBC trait values in 3,411 patients, we excluded 12,864 values in 1,165 patients that had been measured during hospitalization or in the setting of hematological disease, malignancy, or use of drugs that affect RBC traits, leaving a final genotyped sample of 3,012, 80% of whom had ≥2 measurements. The median of each RBC trait was used in the genetic analyses, which were conducted using an additive model that adjusted for age, sex, and PAD status. We identified four genomic loci that were associated (P<5 × 10(-8)) with one or more of the RBC traits (HBLS1/MYB on 6q23.3, TMPRSS6 on 22q12.3, HFE on 6p22.1, and SLC17A1 on 6p22.2). Three of these loci (HBLS1/MYB, TMPRSS6, and HFE) had been identified in recent GWAS and the allele frequencies, effect sizes, and the directions of effects of the replicated SNPs were similar to the prior studies.Our results demonstrate feasibility of using the EMR to conduct high throughput genomic studies of medically relevant quantitative traits
    • …
    corecore