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Abstract 

Background: The majority of U.S. reports of COVID-19 clinical characteristics, disease course, and treatments are 
from single health systems or focused on one domain.  Here we report the creation of the National COVID Cohort 
Collaborative (N3C), a centralized, harmonized, high-granularity electronic health record repository that is the 
largest, most representative U.S. cohort of COVID-19 cases and controls to date. This multi-center dataset supports 
robust evidence-based development of predictive and diagnostic tools and informs critical care and policy. 

Methods and Findings:  In a retrospective cohort study of 1,926,526 patients from 34 medical centers nationwide, 
we stratified patients using a World Health Organization COVID-19 severity scale and demographics; we then 
evaluated differences between groups over time using multivariable logistic regression. We established vital signs 
and laboratory values among COVID-19 patients with different severities, providing the foundation for predictive 
analytics. The cohort included 174,568 adults with severe acute respiratory syndrome associated with SARS-CoV-2 
(PCR >99% or antigen <1%) as well as 1,133,848 adult patients that served as lab-negative controls. Among 32,472 
hospitalized patients, mortality was 11.6% overall and decreased from 16.4% in March/April 2020 to 8.6% in 
September/October 2020 (p = 0.002 monthly trend). In a multivariable logistic regression model, age, male sex, 
liver disease, dementia, African-American and Asian race, and obesity were independently associated with higher 
clinical severity. To demonstrate the utility of the N3C cohort for analytics, we used machine learning (ML) to 
predict clinical severity and risk factors over time. Using 64 inputs available on the first hospital day, we predicted a 
severe clinical course (death, discharge to hospice, invasive ventilation, or extracorporeal membrane oxygenation) 
using random forest and XGBoost models (AUROC 0.86 and 0.87 respectively) that were stable over time. The 
most powerful predictors in these models are patient age and widely available vital sign and laboratory values. The 
established expected trajectories for many vital signs and laboratory values among patients with different clinical 
severities validates observations from smaller studies, and provides comprehensive insight into COVID-19 
characterization in U.S. patients. 

Conclusions: This is the first description of an ongoing longitudinal observational study of patients seen in diverse 
clinical settings and geographical regions and is the largest COVID-19 cohort in the United States. Such data are the 
foundation for ML models that can be the basis for generalizable clinical decision support tools. The N3C Data 
Enclave is unique in providing transparent, reproducible, easily shared, versioned, and fully auditable data and 
analytic provenance for national-scale patient-level EHR data. The N3C is built for intensive ML analyses by 
academic, industry, and citizen scientists internationally. Many observational correlations can inform trial designs 
and care guidelines for this new disease. 
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Introduction 

As of mid-December 2020, severe acute respiratory syndrome associated with coronavirus-2 (SARS-CoV-2) has 

infected more than 70 million people and caused more than 1.6 million deaths worldwide[a]. SARS-CoV-2 can cause 

coronavirus disease of 2019 (COVID-19), a condition characterized by pneumonia, hyperinflammation, hypoxemic 

respiratory failure, a prothrombotic state, cardiac dysfunction, substantial mortality, and persistent morbidity in 

some survivors. Few FDA-authorized therapeutics are available, and vaccine deployment has been slow. Progress in 

COVID-19 research has been slowed by lack of broad access to clinical data. Investigators in the United Kingdom1 

and Denmark1,2 have performed person-level analytics across their populace, but the U.S. has not had this capacity. 

A large, multi-center, representative clinical dataset has been desperately needed by U.S. clinicians, scientists, health 

systems, and policy-makers to develop predictive and diagnostic computational tools and to inform critical 

decisions. 

 

To address these gaps, N3C was formed to accelerate understanding of SARS-CoV-2 and demonstrate a novel 

approach for collaborative data sharing and analytics during a pandemic. The National COVID Cohort Collaborative 

(N3C)3 is comprised of members from the NIH Clinical and Translational Science Awards (CTSA) Program and its 

Center for Data to Health (CD2H), the IDeA Centers for Translational Research[b], the National Patient-Centered 

Clinical Research Network (PCORNet, pcornet.org), the Observational Health Data Sciences and Informatics 

(OHDSI, ohdsi.org) network, TriNetX (trinetx.com), and the Accrual to Clinical Trials (ACT, 

actnetwork.us/National) network.  

 

Here we provide a detailed clinical description of the largest cohort of U.S. COVID-19 cases and representative 

controls to date. This cohort is racially and ethnically diverse and geographically distributed. We demonstrate its 

impact by 1) evaluating COVID-19 severity and risk factors over time and 2) using machine learning (ML) to 

develop a clinically useful model that accurately predicts severity using data from the first day of hospital 

admission.  

 

Methods 

Cohort Definition and Outcome Stratification 
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Because of the broad inclusion criteria, N3C includes cases and appropriate controls for varied analyses including 

both outpatients and inpatients (Supplemental Table 1). N3C includes patients with any encounter after 1/1/2020 

with 1) one of a set of a priori-defined SARS-CoV-2 laboratory tests or 2) a “strong positive” diagnostic code or 3) 

two “weak positive” diagnostic codes during the same encounter or on the same date prior to 5/1/2020. The cohort 

definition is publicly available on GitHub.[c] For N3C patients, encounters in the same health system beginning on or 

after 1/1/2018 are also included to provide information about pre-existing health conditions (“lookback data”). See 

Supplemental Methods for information about N3C architecture, data ingestion, and integration.  

 

We conducted a retrospective cohort study of adults ≥ 18 years old at the 34 N3C sites whose data 1) have 

completed harmonization and integration (see Supplemental Methods), 2) were released for analysis, and 3) 

included the necessary death and mechanical ventilation information (Supplemental Figure 1). In order to 

demonstrate the scope of N3C, Figure 1a-b and Supplemental Table 1 are based on the entire cohort. All subsequent 

analyses include only patients with a positive SARS-CoV-2 laboratory test (polymerase chain reaction [PCR] or 

antigen) (Table 1).  

 

 

 

[a]. https://coronavirus.jhu.edu/map 

[b]. https://www.nigms.nih.gov/Research/DRCB/IDeA/Pages/IDeA-CTR.aspx 

[c].  https://github.com/National-COVID-Cohort-Collaborative/Phenotype_Data_Acquisition 
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Table 1: SARS-CoV-2 Laboratory-Confirmed Positive Cohort Characteristics and Clinical Course 

  

Mild 
Outpatient 

WHO Severity 1-
3 

Mild_ED 
Outpatient with 

ED visit 
WHO Severity 

~3 

Moderate 
Hospitalized 

without invasive 
ventilation 

WHO 
Severity 4-6 

Severe 
Hospitalized with 

invasive 
ventilation or 

ECMO 
WHO 

Severity 7-9 

Hospital 
Mortality or 
Discharge to 

Hospice 
WHO Severity 

10 

N 121,078 21,018 25,907 2,790 3,775 

Age (mean +/- SD) 
41.1 (17.2) 
n=121078 

43.4 (16.8) 
n=21018 

55.0 (19.1) 
n=25907 

57.0 (15.4) 
n=2790 

71.8 (14.7) 
n=3775 

Sex      

 Female 65,435 11,410 13,396 1,089 1,564 

 Male 55,526 9,605 12,506 1,697 2,211 

 Other* 117 20 or fewer 20 or fewer 20 or fewer 0 

Race      

 White or Caucasian 70,330 7,786 10,739 1,020 1,912 

 Black or African-American 14,616 6,351 8,003 869 1,101 

 Native Hawaiian or Pacific Islander 267 40 66 20 or fewer 20 or fewer 

 Asian 2,778 564 717 86 120 

 Other 1030 403 373 51 48 

 Missing/Unknown 32,057 5,874 6,009 757 584 

Ethnicity      

 Hispanic 18,539 5,312 5,145 610 476 

 Non-Hispanic 80,188 12,510 17,313 1,789 2,779 

 Missing/Unknown 22,351 3,196 3,449 391 520 

Insurance Payer      

 Medicare 2,480 906 2,852 308 823 

 Commercial 11,718 2,277 1,984 227 237 

 Medicaid 2,945 1,590 1,974 242 294 

 Other 115,480 18,576 22,876 2,409 3,124 

Body Size      

 Body Mass Index 
(mean +/- SD) 

30.1 (7.6) 
n=39836 

31.2 (7.8) n=9552 
31.0 (9.0) 
n=16489 

32.9 (9.4) n=1862 29.5 (8.7) n=2440 

 
Weight, kg 
(mean +/- SD) 

86.3 (23.7) 
n=47284 

87.3 (23.7) 
n=13511 

88.6 (26.0) 
n=20068 

95.5 (26.8) 
n=2349 

84.6 (26.7) 
n=3106 

Clinical course      

 Hospital LOS, median (IQR)   6.6 (8.9) n=25906 
27.5 (26.1) 

n=2790 
14.0 (23.3) 

n=3775 

 

Table 1 Legend. SARS-CoV-2 = severe acute respiratory syndrome associated with coronavirus-2. ED = 

Emergency Department. WHO = World Health Organization. ECMO = extracorporeal membrane oxygenation. LOS 

= length of stay. We stratified patients using the Clinical Progression Scale (CPS) established by the World Health 

Organization (WHO) for COVID-19 clinical research.4 Severity assigned by patient-specific encounter maximum 
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severity. *Other includes non-binary, no matching concept, and no information. Per N3C policy, we censored any 

cells with 1-20 patients and replaced them with “20 or fewer.” 

 

Hospital Index Encounter and Clinical Severity 

We defined a single index encounter for each laboratory-confirmed positive patient using a pre-specified algorithm 

(Supplemental Methods). We stratified patients using the Clinical Progression Scale (CPS) established by the World 

Health Organization (WHO) for COVID-19 clinical research.4 We placed patients into strata defined by the 

maximum clinical severity during their index encounter (Table 1). We collapsed some WHO CPS categories due to 

data limitations (e.g. some sites do not submit fraction of inspired oxygen [FiO2]).  

 

Variable Definition and Statistical Methods 

We defined or identified existing concept sets in the Observational Medical Outcomes Partnership (OMOP) 

common data model (CDM) for each clinical concept (e.g. laboratory measure, vital sign, or medication, see 

Supplemental Methods). We validated each concept set with input from informatics and clinical subject matter 

experts. All concept sets and analytic pipelines are fully reproducible and will be made publicly available. We tested 

time trends using linear regression and differences between groups using multivariable logistic regression. See 

Supplemental Methods for additional information including software packages used. 

 

Machine Learning Methods 

We developed models to predict patient-specific maximum clinical severity: hospitalization with death, discharge to 

hospice, invasive mechanical ventilation, or extracorporeal membrane oxygenation (ECMO) versus hospitalization 

without any of those. To avoid immortal time bias, we only included patients with at least one hospital overnight. 

We split the hospitalized laboratory-confirmed positive cohort into randomly selected 70% training and 30% testing 

cohorts stratified by outcome proportions and held out the testing set. We chose a broad set of potential predictors 

present for at least 15% of the training set (Supplemental Table 2). The input variables are the most abnormal value 

on the first calendar day of the hospital encounter. When patients did not have a laboratory test value on the first 

calendar day, we imputed normal values for specialized labs (e.g. ferritin, procalcitonin) and the median cohort 

value for common labs (e.g. sodium, albumin) (Supplemental Table 2). We compared several analytical approaches 
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with varying flexibility and interpretability: logistic regression +/- L1 and L2 penalty, random forest, support vector 

machines, and XGBoost (github.com/dmlc/xgboost).  

 

We internally validated models and limited overfitting using 5-fold cross-validation and evaluated models using the 

testing set and area under the receiver operator characteristic (AUROC) as the primary metric. Secondary metrics 

included precision/positive predictive value, recall/sensitivity, specificity, and F1-measure. Because SARS-CoV-2 

outcomes have improved over time5, we evaluated model performance overall and for March-May 2020 and June-

October 2020. See Supplemental Methods. 

 

Role of the funding source 

The primary study sponsors are multiple institutes of the U.S. National Institutes of Health. The National Center for 

Advancing Translational Sciences is the primary steward of the N3C data, and created the underlying architecture of 

the N3C Data Enclave, manages the Data Transfer Agreements and Data Use Agreements, houses the Data Access 

Committee, and supports contracts to vendors (see conflicts of interests section) to help build various aspects of the 

N3C Data Enclave. Employees of the NIH and of the contracting companies are included as authors of the 

manuscript and participated in the writing and decision to submit the manuscript. Please see the author contribution 

section for details.  

 

Results 

Study Cohort 

As of December 7, 2020, data from 34 sites was harmonized and integrated into the N3C release set. The cohort 

includes data about 1,926,526 patients (Supplemental Table 1). The cohort derives from all U.S. geographic regions, 

but is more concentrated in the Southeast, Mid-Atlantic, and Midwest (Figure 1a). The age, sex, race, ethnicity, and 

insurance payer distributions (Figure 1b and Supplemental Table 1) indicate a diverse patient cohort that is 

representative of many segments of the U.S. population. Importantly, African-American and Hispanic patients, who 

have suffered disproportionately from COVID-196, are represented in sufficient numbers to support robust subgroup 

analyses, pathophysiologic hypothesis generation, and testing of algorithms and models to avoid bias (Table 1). 
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Supplemental Tables 3a and 3b show the cohort stratified by CDM and strengths and weaknesses of each CDM. 

Figure 1a shows cohort geographic distribution evolution during 2020. 

 

Of the overall cohort, 174,568 adults (9.1%) had a positive SARS-CoV-2 PCR or antigen test at a site with death 

and ventilation data available (Table 1). Antigen tests represent <5% of a single site’s positive tests. All other 

positive patients had positive PCR tests.  
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Figure 1: Geographic, Age, Sex, Race, Ethnicity, and Comorbidity Distributions of N3C Cohort. 

Figure 1a shows the representation of each U.S. subregion in the overall (N = 1,926,526) cohort. Trend lines show 

the accumulation of each subregion’s sample size of lab confirmed positive cases over 2020. The Southeast, Mid-

Atlantic, and Midwestern regions are the most heavily represented, but all regions have substantial patient counts. 

Figure 1b shows the age, sex, race, and ethnicity distributions of the overall N3C cohort, stratified by the N3C 

phenotype groups (publicly available on GitHub[c]). Racial and ethnic minorities are well-represented. COVID = 

coronavirus disease. NHPI = Native Hawaiian or Pacific Islander. Figure 1c shows comorbidity distributions for the 

9 
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laboratory-confirmed positive adult cohort (N = 174,568). See Supplemental Methods for comorbidity definitions. 

We stratified patients using the Clinical Progression Scale (CPS) established by the World Health Organization 

(WHO) for COVID-19 clinical research, see Table 14. Severity assigned by patient-specific encounter maximum 

severity. No ED = outpatient only without emergency department visit, ED = emergency department visit, moderate 

= hospitalized without invasive ventilation or extracorporeal membrane oxygenation (ECMO), severe = hospitalized 

with invasive ventilation or ECMO, mortality/hospice = hospital mortality or discharge to hospice. 

 

 

Clinical Course and Mortality 

Of those with a positive test, 32,472 (18.6%) were hospitalized. The median length of hospital stay was 5 days (IQR 

2 to 10). Mortality (including discharge to hospice) was 11.6% among hospitalized patients (Table 1). Others have 

reported that inpatient mortality has decreased over time7. We confirm this: inpatient mortality decreased from 

16.4% in March and April to 8.6% in September and October (P for monthly linear trend 0.002). Our data also show 

that clinical severity has shifted toward less invasive mechanical ventilation and/or ECMO as the pandemic has 

progressed (Figure 2a).  
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Figure 2. Clinical Severity, Age, and Antimicrobial and Immunomodulatory Medication Use Over Time 

Figure 2a shows the distribution of patient-specific encounter maximum severity among hospitalized patients 

during 2020. Mortality and invasive ventilation or extracorporeal membrane oxygenation (“Severe”) have decreased 

steadily, monthly trend p = 0.002. Strata assigned using the Clinical Progression Scale (CPS) established by the 

World Health Organization (WHO) for COVID-19 clinical research (hospital mortality or discharge to hospice 

[black], invasive ventilation or extracorporeal membrane oxygenation [red], hospitalized without any of those 

[yellow], or emergency department visit only [green], see Table 14). The percentage of patients from each month is 

shown over each severity group bar. Figure 2b shows how the age distribution of hospitalized patients has changed 

11 

 

ed 
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during 2020. The percentage of patients from each month is shown over each age bracket bar. Older patients (darker 

blue) were more prominent in the spring and the fall, with more younger patients (lighter blue/teal) in the summer. 

Figure 2c shows the evolution of antimicrobial and immunomodulatory treatment regimens for hospitalized patients 

(top 3 severity strata, see Table 1) during 2020.  

 

Demographics, Comorbidities, and Obesity 

The age distribution for hospitalized patients was older during spring 2020, younger during the summer, and older 

again in the fall (Figure 2b). Lookback data that allowed calculation of comorbidities was present for 49% of 

hospitalized patients. Of hospitalized patients, 41% had at least one comorbid condition; the most common was 

diabetes mellitus (25.9%, Figure 1c). Mean body mass index (BMI) was 30 or above for all severity groups (Table 

1). In a multivariable logistic regression model, age, male sex, liver disease, dementia, African-American and Asian 

race, and obesity (BMI > 30) were independently associated with higher patient-specific maximum clinical severity 

(invasive ventilation, ECMO, death, or discharge to hospice versus none of those, Supplemental Table 4). 

Interestingly, rheumatologic disease and blood type AB were protective. This analysis was conducted only to 

provide inference about previously reported risk factors and occurred after the prediction model was built, see 

below. 

 

Vital Sign and Laboratory Measurements 

As a hospital encounter progressed, those who ultimately developed higher clinical severity (invasive ventilation, 

ECMO, or death) tended to have progressively more abnormal (higher) mean heart rate (HR), respiratory rate (RR), 

and temperature than those who did not (Figure 3a). Mean diastolic blood pressure (DBP) and oxygen saturation 

(SpO2) among those who ultimately died continued to become more abnormal (lower) while those who were 

invasively ventilated or on ECMO became more normal (higher, Figure 3a). Early in the hospital encounter, mean 

values of DBP, SpO2, and widely used measures of inflammation (C-reactive protein [CRP] and ferritin), 

immunologic activation (white blood cell count, WBC), fibrinolysis (D-dimer), oxygen delivery (lactate), and renal 

function (creatinine) were more abnormal among those who ultimately required invasive ventilation or ECMO than 

those who did not (Figures 3a and 3b). These findings support the hypothesis that clinical severity can be predicted 

using information available early in a hospital course (see prediction models).  
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Figure 3. Trajectories of Vital Signs and Laboratory Tests During a Hospital Encounter 

Figure 3a shows the median (line) and interquartile range (bars) of each vital sign on each hospital day, stratified by 

patient maximum severity (hospital mortality or discharge to hospice [black], invasive ventilation or extracorporeal 

membrane oxygenation [red], hospitalized without any of those [yellow], or emergency department visit only 

[green], see Table 1). Figure 3b shows the median (line) and interquartile range (bars) of each laboratory test on 

each hospital day, stratified by the same severity groups. BNP = brain natriuretic peptide. 

13 
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Other measurements (e.g. sodium, platelet count, lymphocyte count) show potential utility as early outcome 

predictors, as their values near the beginning of a hospital encounter tend to separate patients with lower and higher 

maximum clinical severity (Supplemental Figure 2). Mean values of brain natriuretic peptide were low early in 

hospital encounters but showed meaningful spikes between hospital days 10 and 15. This is consistent with reports 

of the timing of cardiac failure in COVID-198. Overall, patients with more abnormal nadir and/or peak values of 

several vital signs and laboratory measurements were more often represented in higher severity groups (invasively 

ventilated, ECMO, or death; Supplemental Figures 3a-b). CRP, ferritin, D-dimer, WBC, and IL-6 have been 

identified by the WHO as key biochemical parameters for a core COVID-19 outcome set4. These were measured in 

44-94% of hospitalized patients, except IL-6 (7.6%). A relatively small number of hospitalized patients had blood 

type data (9.1%, Supplemental Figure 4). 

 

Treatments 

Usage of antimicrobial and immunomodulatory medications has changed dramatically over time (Figure 2c). 

Overall, 66.2% of the hospitalized cohort received at least one antimicrobial, with significant treatment regimen 

heterogeneity (Supplemental Figure 5a and Supplemental Table 5a). Patients who received invasive ventilation and 

ECMO received more antimicrobials overall (Supplemental Figure 5a). Antivirals with potential activity against 

SARS-CoV-2 were given to 16.7% (remdesivir) and 0.6% (lopinavir/ritonavir) of hospitalized patients. At least one 

immunomodulatory medication was given to 41.5% of hospitalized patients, also with wide variation in treatment 

regimen (Supplemental Figure 5b and Supplemental Table 5a). More patients received hydrocortisone, 

methylprednisolone, and prednisone than dexamethasone (Supplemental Table 5a). The trial indicating survival 

benefit from dexamethasone was published in July 2020.9 Other steroids also have modestly supportive clinical trial 

data.10 

 

Of the hospitalized cohort, 14.0% received any invasive respiratory support (mechanical ventilation or inhaled or 

systemic pulmonary vasodilators, Supplemental Table 5b). Similarly, 8.3% received medications for cardiovascular 

support or ECMO and 3.2% received dialysis or continuous renal replacement therapy. 
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Severity Prediction 

We developed several models that accurately predict a severe clinical course using data from the first hospital 

calendar day (Supplemental Figure 6 and Supplemental Table 6). The models with the best discrimination of severe 

versus non-severe clinical course were built using XGBoost (AUROC 0.87) and random forest (AUROC 0.86). Both 

are flexible nonlinear tree-based models that provide interpretability with a variable importance metric (Figure 4). 

Importantly, discrimination by the two models was stable over time (March-May 2020 and June-October 2020, 

Supplemental Table 6). This indicates that the models did not train on health care processes only typical during the 

pandemic’s chaotic first wave. Commonly collected variables (age, SpO2, RR, blood urea nitrogen, systolic blood 

pressure, and aspartate aminotransferase) were among the inputs with the highest variable importance for both 

models (Figure 4).  
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Figure 4. Variable Importance in the Machine Learning Models Predicting Clinical Severity 

The 64 machine learning (ML) model input variables are listed by their mean variable importance rank across ML 

model types. Each column is a ML model type. Logistic regression is shown without penalization and with L1 and 

L2 penalties. The table cells show a heat map with darkest (blue) representing highest variable importance and 

lightest (teal) representing lower variable importance. See Methods and Supplemental Methods for details about 

variable definitions, model construction, and testing. NTproBNP = N-Terminal-prohormone B-type Natriuretic 

Peptide. 

 

Discussion 

This manuscript characterizes the largest U.S. COVID-19 cohort to date. We have confirmed a month-over-month 

decrease in COVID-19 inpatient mortality and invasive ventilation rates since March 2020. We developed accurate 

ML models to predict clinical severity based only on information available on the first calendar day of admission. 

The most powerful predictors in these models are patient age and widely available vital sign and laboratory values. 

These models can be the basis for generalizable clinical decision support tools. We also established expected 

trajectories for many vital signs and laboratory values among patients with different clinical severities. Expected 

trajectories can contribute to clinician decision-making about what a patient will need.  

 

Site heterogeneity in the distribution of predictors of severe COVID-19 disease including age, race, ethnicity, and 

existing comorbidities (e.g. diabetes) has complicated interpretation of their independent impact on outcomes. Like 

others, we found that age, male sex1, African-American race6,11and obesity12,13 were associated with greater clinical 

severity. Associations of liver disease and dementia with COVID-19 severity have also been reported14,15. We found 

that patients with rheumatologic disease had lower clinical severity. This is consistent with reports that after 

adjustment for age, diabetes, and renal impairment, patients with rheumatologic disease on some treatment regimens 

have lower risk of hospitalization16. Increased risk of intubation and death has been inconsistently found among 

patients with blood types AB, A, and B relative to type O.17–19 In contrast, we found that blood type AB was 

protective.  
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We also found significant treatment regimen heterogeneity for inpatients with COVID-19. Some medications have 

fallen out of favor (e.g. hydroxychloroquine, azithromycin); others are the subject of ongoing studies (e.g. anakinra, 

tocilizumab). For most treatments, the balance of risks and benefits has not been evaluated rigorously in randomized 

controlled trials. Ongoing monitoring for adverse effects in observational data like N3C will be important.  

 

The N3C has unique features that distinguish it from other COVID-19 data resources. First, it harmonizes data from 

a very large number of clinical sites (73 have signed data transfer agreements to date). This is important because 

significant site-level variation in critical metrics such as invasive ventilation and mortality has been reported.20–23 

Central curation ensures that N3C data are robust and quality-assured across sites. This is in contrast to the known 

challenges of relying on site-level CDM quality assurance processes in distributed networks (e.g. OHDSI, 

PCORnet). Most U.S. reports of COVID-19 clinical characteristics, disease course, treatments, and outcomes come 

from a single hospital or health system6,22 in a single geographic region. Another network has reported a large 

COVID-19 cohort, but the patient-level data is not centralized and thus is less amenable to machine learning24. 

 

Developed under the intense time pressure of a health crisis, earlier data aggregation efforts 1,21,25–28 may not have 

been designed to support future research. The N3C Data Enclave3 provides transparent, easily shared, versioned, and 

fully auditable data and analytic provenance. This is a key advantage, as a lack of auditable data and analytic 

provenance has resulted in retraction of high-profile COVID-19 publications.29,30  

 

N3C users should bear in mind its limitations. Because the data are aggregated from many health systems and 4 

CDMs that vary in granularity, some sites have systematic missingness of some variables (see Supplemental 

Methods). Detailed respiratory support information such as oxygen flow, FiO2, and ventilator settings (typically 

recorded in EHR flowsheets) is not fully available. Orders related to limitations in care such as “do not attempt 

resuscitation” (DNAR) are not yet present in N3C. Some inpatient mortality in our study likely occurred in patients 

who had DNAR orders in place. Exclusion of those patients might improve severity model prediction. Finally, exact 

time of laboratory values is inconsistently provided by sites, so labs are standardized to calendar day, but not time of 

day.  
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In conclusion, N3C is a nationally representative, transparent, reproducible, harmonized data resource that enables 

effective and efficient collaborative observational COVID-19 research. N3C is built for intensive machine learning 

analyses by academic, industry, and citizen scientists internationally. We have demonstrated its utility by developing 

a clinically useful patient severity predictor.  

Ethics and Regulatory 

The N3C data transfer to NCATS is performed under a Johns Hopkins University Reliance Protocol # IRB00249128 

or individual site agreements with NIH. 

Use of the N3C data for this study is authorized under the following IRB Protocols: 

Site IRB name 
Exempted vs. 
approved Protocol number 

University of Alabama-
Birmingham 

The University of Alabama at Birmingham Office 
of the Institutional Review Board for Human Use exempted IRB-300006285 

University of Colorado Colorado Multiple Institutional Review Board approved 20-2225 

Johns Hopkins 
University 

Johns Hopkins Office of Human Subjects Research 
- Institutional Review Board approved IRB00249128 

University of Kentucky 
Medical Institutional Review Board of the 
University of Kentucky exempted 62294 

University of Michigan 
University of Michigan Medical School 
Institutional Review Board approved HUM00188854 

University of North 
Carolina 

University of North Carolina Chapel Hill 
Institutional Review Board exempted 20-3106 

Oregon State 
University Oregon State University Institutional Review Board approved IRB-2020-0830 

University of Rochester 
University of Rochester Research Subjects Review 
Board exempted STUDY00005366 

Stony Brook University 
Office of Research Compliance, Division of Human 
Subject Protections, Stony Brook University exempted IRB2020-00604 

University of Texas-
Medical Branch 

Institutional Review Board of the University of 
Texas Medical Branch exempted 20-0245 
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The N3C Data Enclave is approved under the authority of the NIH Institutional Review Board for Protocol 000082 

associated with NIH iRIS reference number: 546652 entitled: “NCATS National COVID-19 Cohort Collaborative 

(N3C) Data Enclave Repository.” Further information can be found at https://ncats.nih.gov/n3c/resources. 
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Data Sharing 

The N3C Data Enclave (covid.cd2h.org/enclave) houses fully reproducible, transparent, and broadly available 

limited and de-identified datasets (HIPAA definitions: https://www.hhs.gov/hipaa/for-professionals/privacy/special-

topics/de-identification/index.html). Data is accessible by investigators at institutions that have signed a Data Use 

Agreement with NIH who have taken human subjects and security training and attest to the N3C User Code of 

Conduct. Investigators wishing to access the limited dataset must also supply an institutional IRB protocol. All 

requests for data access are reviewed by the NIH Data Access Committee. A full description of the N3C Enclave 

governance has been published;3 information about how to apply for access is available on the NCATS website: 
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https://ncats.nih.gov/n3c/about/applying-for-access. Reviewers and health authorities will be given access 

permission and guidance to aid reproducibility and outcomes assessment. A Frequently Asked Questions about the 

data and access has been created at; https://ncats.nih.gov/n3c/about/program-faq 

The data model is OMOP 5.3.1, specifications are posted at: https://ncats.nih.gov/files/OMOP_CDM_COVID.pdf 

The latest version of the N3C Covid-19 Phenotype is always available at: 

https://github.com/National-COVID-Cohort-Collaborative/Phenotype_Data_Acquisition 

Governance documents, codesets, code, and other N3C resources are available within the project Github repositories 

and/or in Zenodo for archival purposes: 

https://github.com/National-COVID-Cohort-Collaborative 

https://zenodo.org/communities/cd2h-covid/ 

 

Information on the source Common Data Models is available at: 

OHDSI: https://ohdsi.org/ 

PCORNet: https://pcornet.org/ 

ACT: https://www.dbmi.pitt.edu/node/53983 

TriNetX: https://trinetx.com/ 

 

Other referenced resources are available at: 

COVID-19 Map - Johns Hopkins Coronavirus Resource Center https://coronavirus.jhu.edu/map.html 

Institutional Development Award Program Infrastructure for Clinical and Translational Research (IDeA-CTR) 

https://www.nigms.nih.gov/Research/DRCB/IDeA/Pages/IDeA-CTR.aspx 

xgboost https://github.com/dmlc/xgboost 
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