362 research outputs found

    Stem cell labeling using polyethylenimine conjugated (alpha-NaYbF4:Tm3+)/CaF2 upconversion nanoparticles

    Get PDF
    We report on a polyethylenimine (PEI) covalently conjugated (alpha-NaYbF4:Tm3+)/CaF2 upconversion nanoparticle (PEI-UCNP) and its use for labeling rat mesenchymal stem cells (rMSCs). The PEI-UCNPs absorb and emit near-infrared light, allowing for improved in vivo imaging depth over conventional probes. We found that such covalent surface conjugation by PEI results in a much more stable PEI-UCNP suspension in PBS compared to conventional electrostatic layer by layer (LbL) self-assembling coating approach. We systematically examined the effects of nanoparticle dose and exposure time on rat mesenchymal stem cell (rMSC) cytotoxicity. The exocytosis of PEI-UCNPs from labeled rMSCs and the impact of PEI-UCNP uptake on rMSC differentiation was also investigated. Our data show that incubation of 100-microg/mL PEI-UCNPs with rMSCs for 4 h led to efficient labeling of the MSCs, and such a level of PEI-UCNP exposure imposed little cytotoxicity to rMSCs (95% viability). However, extended incubation of PEI-UCNPs at the 100 microg/mL dose for 24 hour resulted in some cytotoxicity to rMSCs (60% viability). PEI-UCNP labeled rMSCs also exhibited normal early proliferation, and the internalized PEI-UCNPs did not leak out to cause unintended labeling of adjacent cells during a 14-day transwell culture experiment. Finally, PEI-UCNP labeled rMSCs were able to undergo osteogenic and adipogenic differentiation upon in vitro induction, although the osteogenesis of labeled rMSCs appeared to be less potent than that of the unlabeled rMSCs. Taken together, PEI-UCNPs are promising agents for stem cell labeling and tracking

    Spatial Representativeness of PM_(2.5) Concentrations Obtained Using Reduced Number of Network Stations

    Get PDF
    Haze has been a focused air pollution phenomenon in China, and its characterization is highly desired. Aerosol properties obtained from a single station are frequently used to represent the haze condition over a large domain, such as tens of kilometers, which could result in high uncertainties due to their spatial variation. Using a high resolution network observation over an urban city in North China from November 2015 to February 2016, this study examines the spatial representativeness of ground station observations of particulate matter with diameters less than 2.5 μm (PM_(2.5)). We developed a new method to determine the representative area of PM_(2.5) measurements from limited stations. The key idea is to determine the PM_(2.5) spatial representative area using its spatial variability and temporal correlation. We also determine stations with large representative area using two grid networks with different resolutions. Based on the high spatial resolution measurements, the representative area of PM_(2.5) at one station can be determined from the grids with high correlations and small differences of PM_(2.5). The representative area for a single station in the study period ranges from 0.25 to 16.25 km^2, but is less than 3 km^2 for more than half of the stations. The representative area varies with locations, and observation at 10 optimal stations would have a good representativeness of those obtained from 169 stations for the four-month time scale studied. Both evaluations with an empirical orthogonal function (EOF) analysis and with independent dataset corroborate the validity of the results found in this study

    Optimization of Ionic Liquid Based Simultaneous Ultrasonic- and Microwave-Assisted Extraction of Rutin and Quercetin from Leaves of Velvetleaf ( Abutilon theophrasti

    Get PDF
    An ionic liquids based simultaneous ultrasonic and microwave assisted extraction (ILs-UMAE) method has been proposed for the extraction of rutin (RU), quercetin (QU), from velvetleaf leaves. The influential parameters of the ILs-UMAE were optimized by the single factor and the central composite design (CCD) experiments. A 2.00 M 1-butyl-3-methylimidazolium bromide ([C4mim]Br) was used as the experimental ionic liquid, extraction temperature 60°C, extraction time 12 min, liquid-solid ratio 32 mL/g, microwave power of 534 W, and a fixed ultrasonic power of 50 W. Compared to conventional heating reflux extraction (HRE), the RU and QU extraction yields obtained by ILs-UMAE were, respectively, 5.49 mg/g and 0.27 mg/g, which increased, respectively, 2.01-fold and 2.34-fold with the recoveries that were in the range of 97.62–102.36% for RU and 97.33–102.21% for QU with RSDs lower than 3.2% under the optimized UMAE conditions. In addition, the shorter extraction time was used in ILs-UMAE, compared with HRE. Therefore, ILs-UMAE was a rapid and an efficient method for the extraction of RU and QU from the leaves of velvetleaf

    Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive altitudinal gradient

    Get PDF
    Understanding leaf stoichiometric patterns is crucial for improving predictions of plant responses to environmental changes. Leaf stoichiometry of terrestrial ecosystems has been widely investigated along latitudinal and longitudinal gradients. However, very little is known about the vertical distribution of leaf C :N: P and the relative effects of environmental parameters, especially for shrubs. Here, we analyzed the shrub leaf C, N and P patterns in 125 mountainous sites over an extensive altitudinal gradient (523-4685 m) on the Tibetan Plateau. Results showed that the shrub leaf C and C :N were 7.3-47.5% higher than those of other regional and global flora, whereas the leaf N and N: P were 10.2-75.8% lower. Leaf C increased with rising altitude and decreasing temperature, supporting the physiological acclimation mechanism that high leaf C (e.g., alpine or evergreen shrub) could balance the cell osmotic pressure and resist freezing. The largest leaf N and high leaf P occurred in valley region (altitude 1500 m), likely due to the large nutrient leaching from higher elevations, faster litter decomposition and nutrient resorption ability of deciduous broadleaf shrub. Leaf N: P ratio further indicated increasing N limitation at higher altitudes. Interestingly, drought severity was the only climatic factor positively correlated with leaf N and P, which was more appropriate for evaluating the impact of water status than precipitation. Among the shrub ecosystem and functional types (alpine, subalpine, montane, valley, evergreen, deciduous, broadleaf, and conifer), their leaf element contents and responses to environments were remarkably different. Shrub type was the largest contributor to the total variations in leaf stoichiometry, while climate indirectly affected the leaf C :N: P via its interactive effects on shrub type or soil. Collectively, the large heterogeneity in shrub type was the most important factor explaining the overall leaf C :N: P variations, despite the broad climate gradient on the plateau. Temperature and drought induced shifts in shrub type distribution will influence the nutrient accumulation in mountainous shrubs. © Author(s) 2018

    Estimating the contribution of local primary emissions to particulate pollution using high-density station observations

    Get PDF
    Local primary emission, transport, and secondary formation of aerosols constitute the major atmospheric particulate matter (PM) over a certain region. To identify and quantify major sources of ambient PM is important for pollution mitigation strategies, especially on a city scale. We developed two source apportionment methods to make the first‐order estimates of local primary contribution ratio (LCR) of PM_(2.5) (PM with diameter less than 2.5 μm) using the high‐density (about 1/km^2) network observations with high sampling frequency (about 1 hr). Measurements of PM_(2.5) mass concentration from 169 sites within a 20 km × 20 km domain are analyzed. The two methods developed here are mainly based on the spatial and temporal variations of PM_(2.5) within an urban area. The accuracy of our developed methods is subject to the assumptions on the spatial heterogeneity of primary and secondary formed aerosols as well as those from long‐range transport to a city. We apply these two methods to a typical industrial city in China in winter of 2015 with frequent severe haze events. The local primary pollution contributions calculated from the two methods agree with each other that they are often larger than 0.4. The LCR range is from 0.4 to 0.7, with an average value of 0.63. Our study indicates the decisive role of locally emitted aerosols in the urban severe haze formation during the winter time. It further suggests that reductions of local primary aerosol emissions are essential to alleviate the severe haze pollution, especially in industrial cities

    Facile synthesis of a nickel sulfide (NiS) hierarchical flower for the electrochemical oxidation of H2O2 and the methanol oxidation reaction (MOR).

    Get PDF
    The synthesis of a novel hierarchical flower-like NiS via a solvothermal method for the electrochemcial oxidation of H2O2 on a carbon paste electrode with high catalytic activity for the (MOR) in an alkaline medium has been reported. Novel nickel sulfide (NiS) hierarchical flower-like structures were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscopy. A carbon paste electrode was modified with the as-prepared hierarchical flower-like NiS, resulting in a high electrocatalytic activity toward the oxidation of H2O2. The NiS-modified electrode was used for H2O2 sensing, which was achieved over a wide linear range from 0.5 μMto1.37mM(I/μA =-0.19025 + 0.06094 C/mM) with a low limit of detection (LOD) of 0.3 μM and a limit of quantitation (LOQ) of 0.8 μM. The hierarchical flower-like NiS also exhibited a high electrocatalytic activity for the methanol oxidation reaction (MOR) in an alkaline medium with a high tolerance toward the catalyst-poisoning species generated during the MOR. The MOR proceeded via the direct electrooxidation of methanol on the oxidized NiS surface layer because the oxidation peak potential of the MOR was more positive than that of the oxidation of NiS

    Dose-related liver injury of Geniposide associated with the alteration in bile acid synthesis and transportation.

    Get PDF
    Fructus Gardenia (FG), containing the major active constituent Geniposide, is widely used in China for medicinal purposes. Currently, clinical reports of FG toxicity have not been published, however, animal studies have shown FG or Geniposide can cause hepatotoxicity in rats. We investigated Geniposide-induced hepatic injury in male Sprague-Dawley rats after 3-day intragastric administration of 100 mg/kg or 300 mg/kg Geniposide. Changes in hepatic histomorphology, serum liver enzyme, serum and hepatic bile acid profiles, and hepatic bile acid synthesis and transportation gene expression were measured. The 300 mg/kg Geniposide caused liver injury evidenced by pathological changes and increases in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and γ-glutamytransferase (γ-GT). While liver, but not sera, total bile acids (TBAs) were increased 75% by this dose, dominated by increases in taurine-conjugated bile acids (t-CBAs). The 300 mg/kg Geniposide also down-regulated expression of Farnesoid X receptor (FXR), small heterodimer partner (SHP) and bile salt export pump (BSEP). In conclusion, 300 mg/kg Geniposide can induce liver injury with associated changes in bile acid regulating genes, leading to an accumulation of taurine conjugates in the rat liver. Taurocholic acid (TCA), taurochenodeoxycholic acid (TCDCA) as well as tauro-α-muricholic acid (T-α-MCA) are potential markers for Geniposide-induced hepatic damage

    Compressive sensing based secret signals recovery for effective image steganalysis in secure communications

    Get PDF
    Conventional image steganalysis mainly focus on presence detection rather than the recovery of the original secret messages that were embedded in the host image. To address this issue, we propose an image steganalysis method featured in the compressive sensing (CS) domain, where block CS measurement matrix senses the transform coefficients of stego-image to reflect the statistical differences between the cover and stego- images. With multi-hypothesis prediction in the CS domain, the reconstruction of hidden signals is achieved efficiently. Extensive experiments have been carried out on five diverse image databases and benchmarked with four typical stegographic algorithms. The comprehensive results have demonstrated the efficacy of the proposed approach as a universal scheme for effective detection of stegography in secure communications whilst it has greatly reduced the numbers of features requested for secret signal reconstruction
    corecore