229 research outputs found

    Stub-loaded resonator-fed filtering patch antenna with improved bandwidth

    Get PDF
    A method of designing a patch antenna with wideband and filtering characteristics is proposed in this paper. Different from traditional aperture-coupled patch antenna, a stub loaded resonator (SLR) is employed as the feed. This coupled SLR-patch produces three reflection zeros (dual-mode from the SLR and one from the patch) and therefore a wider bandwidth. Due to the resonant property of the SLR, the antenna exhibits a filtering performance and good out-of-band rejection. This integration approach eliminates the 50 Ohm interfaces between the traditionally cascaded filter and antenna. This contributes to a more compact and simplified RF frontend. Methods to control the modes of the SLR are investigated. The simulation and measurement results agree well with each other, showing an excellent performance in terms of bandwidth, frequency selectivity and radiation patterns

    Dynamic analysis of the longitudinal vibration on bottom drilling tools

    Get PDF
    With extreme complexity, the drilling process is a dynamic process which is severely influenced by longitudinal vibration. Longitudinal vibration, as one of the most important reason, is directly generated by the fatigue failure of the bottom hole assembly. In this paper, the natural frequencies of longitudinal vibration along the drillstring are analyzed by the finite element method. The deformed plot, stress nephogram, and displacement contour map under 1 to 4 ordered the natural frequency of the longitudinal vibration are obtained. The analysis results show that the maximum deformation always appears in the central part of the string so that some technological process on these positions is required to reduce the collision between the string and wellbore wall. Additionally, a time series of longitudinal vibration of a bottom rotating drillstring is extracted from real-time field data, which is measured while drilling near the drill bit. Then the time-frequency and energy spectrum analysis of the longitudinal vibration is carried out. The results of the statistical analysis show that, when the drillstring uniformly rotates, the longitudinal vibration can be considered as a kind of random vibration. However, if the stick-slip phenomenon occurs during the drilling process, the energy concentration will appear in the time series spectrum of the longitudinal vibration, by which means the vibration could be regarded as random no longer

    Low-profile circularly-polarized filtering antenna with improved bandwidth and gain

    Get PDF

    Metadata Caching in Presto: Towards Fast Data Processing

    Full text link
    Presto is an open-source distributed SQL query engine for OLAP, aiming for "SQL on everything". Since open-sourced in 2013, Presto has been consistently gaining popularity in large-scale data analytics and attracting adoption from a wide range of enterprises. From the development and operation of Presto, we witnessed a significant amount of CPU consumption on parsing column-oriented data files in Presto worker nodes. This blocks some companies, including Meta, from increasing analytical data volumes. In this paper, we present a metadata caching layer, built on top of the Alluxio SDK cache and incorporated in each Presto worker node, to cache the intermediate results in file parsing. The metadata cache provides two caching methods: caching the decompressed metadata bytes from raw data files and caching the deserialized metadata objects. Our evaluation of the TPC-DS benchmark on Presto demonstrates that when the cache is warm, the first method can reduce the query's CPU consumption by 10%-20%, whereas the second method can minimize the CPU usage by 20%-40%.Comment: 5 pages, 8 figure

    The symbiotic bacteria Alcaligenes faecalis of the entomopathogenic nematodes Oscheius spp. exhibit potential biocontrol of plant- and entomopathogenic fungi

    Get PDF
    Soil-dwelling entomopathogenic nematodes (EPNs) kill arthropod hosts by injecting their symbiotic bacteria into the host hemolymph and feed on the bacteria and the tissue of the dying host for several generations cycles until the arthropod cadaver is completely depleted. The EPN-bacteria-arthropod cadaver complex represents a rich energy source for the surrounding opportunistic soil fungal biota and other competitors. We hypothesized that EPNs need to protect their food source until depletion and that the EPN symbiotic bacteria produce volatile and non-volatile exudations that deter different soil fungal groups in the soil. We isolated the symbiotic bacteria species (Alcaligenes faecalis) from the EPN Oscheius spp. and ran infectivity bioassays against entomopathogenic fungi (EPF) as well as against plant pathogenic fungi (PPF). We found that both volatile and non-volatile symbiotic bacterial exudations had negative effects on both EPF and PPF. Such deterrent function on functionally different fungal strains suggests a common mode of action of A.faecalis bacterial exudates, which has the potential to influence the structure of soil microbial communities, and could be integrated into pest management programs for increasing crop protection against fungal pathogens

    A Ku-Band Filtering Duplex Antenna for Satellite Communications

    Get PDF
    In this paper, a dual-polarisation shared-aperture duplex antenna is presented for satellite communications at the standard microwave Ku-band, based on the integrated filtering-antenna concept and co-design approach. The design relies on the use of resonators coupled to the radiating dual-band dual-polarisation antenna. The resonant patch antenna forms one pole of each channel filter, resulting in a third-order filter in the Rx channel and a second-order filter in the Tx channel. The Rx and Tx ports of the antenna take in horizontal and vertical linear polarisations, respectively. The integrated duplexer helps to increase the isolation between the ports and the selectivity of each channel. The integration between the filter and the antenna is achieved by electromagnetic coupling, without the need of external matching circuits. Thus it attains a compact footprint. The operation frequencies of the demonstrated duplexantenna are from 11 to 12.5 GHz (12.8%) for the downlink to the Rx port, and from 13 to 14.4 GHz (10.2%) for the uplink at the Tx port. High port-to-port isolation of over 40 dB is realized to reduce channel interference. Flat in-band average gains are achieved to be 8.3 and 8.6 dBi, for the low- and high-bands, respectively

    Multi-mode resonator-fed dual polarized antenna array with enhanced bandwidth and selectivity

    Get PDF
    A novel design concept of multi-mode filtering antenna, which is realized by integrating a multi-mode resonator and an antenna, has been applied to the design of dual-polarized antenna arrays for achieving a compact size and high performance in terms of broad bandwidth, high frequency selectivity and out-of-band rejection. To verify the concept, a 2×2 array at C-band is designed and fabricated. The stub-loaded resonator (SLR) is employed as the feed of the antenna. The resonant characteristics of SLR and patch as well as the coupling between them are presented. The method of designing the integrated resonator-patch module is explained. This integrated design not only removes the need for separated filters and traditional 50 Ω interfaces, but also improves the frequency response of the module. A comparison with the traditional patch array has been made, showing that the proposed design has a more compact size, wider bandwidth, better frequency selectivity and out-of-band rejection. Such low-profile light weigh broadband dual polarized arrays are useful for space-borne synthetic aperture radar (SAR) and wireless communication applications. The simulated and measured results agree well, demonstrating a good performance in terms of impedance bandwidth, frequency selectivity, isolation, radiation pattern and antenna gain
    • …
    corecore