326 research outputs found

    Decentralized H

    Get PDF
    For large-scale systems which are modeled as interconnection of N networked control systems with uncertain missing measurements probabilities, a decentralized state feedback H∞ controller design is considered in this paper. The occurrence of missing measurements is assumed to be a Bernoulli random binary switching sequence with an unknown conditional probability distribution in an interval. A state feedback H∞ controller is designed in terms of linear matrix inequalities to make closed-loop system exponentially mean square stable and a prescribed H∞ performance is guaranteed. Sufficient conditions are derived for the existence of such controller. A numerical example is also provided to demonstrate the validity of the proposed design approach

    Important clinical research progress in lung cancer in 2022

    Get PDF
    Lung cancer remains the malignant tumor with the highest morbidity and mortality in China, among which non-small cell lung cancer (NSCLC) accounts for more than 80%. Clinical studies related to adjuvant immunotherapy and neoadjuvant immunotherapy in perioperative NSCLC have been updated. In terms of targeted therapy, the research and development of drugs for rare and difficult-to-treat targets continues to be hot, and the research and development of antibody-drug conjugate gradually becomes hot, which is expected to open a new track for the diagnosis and treatment of lung cancer. Rare target diagnosis and treatment of NSCLC has gradually entered an era of precision and standardization. In terms of immunotherapy for patients with advanced NSCLC, the new regimen of combined immunotherapy is expected to further improve the efficacy. This review, with the focus on advanced NSCLC, summarized the development of NSCLC, discussed current problems and challenges, and proposed prospects on future directions

    Seasonal and interannual ice velocity changes of Polar Record Glacier, East Antarctica

    Full text link
    We present a study of seasonal and interannual ice velocity changes at Polar Record Glacier, East Antarctica, using ERS-1/2, Envisat and PALSAR data with D-InSAR and intensity tracking. Ice flow showed seasonal variations at the front of the glacier tongue. Velocities in winter were 19% less than velocities during summer. No significant interannual changes were detected. Ice velocities in the grounding zone and grounded glacier did not show clear seasonal or interannual changes. The distributio of the seasonal variations suggests that the cause for the changes should be localized. Possible causes are seasonal sea-ice changes and iceberg blocking. Satellite images show that the sea ice surrounding Polar Record Glacier undergoes seasonal changes. Frozen sea ice in winter slowed the huge iceberg, and provided increased resistance to the glacier flow. The interaction between the glacier tongue, ice berg and sea ice significantly influences their flow pattern

    Advances in fatty acid metabolism reprogramming of lung cancer

    Get PDF
    Lung cancer is the most common malignant tumor and the leading cause of cancer-related mortality. Although the development of targeted therapy and immunotherapy has significantly improved the efficacy and prognosis of lung cancer patients, the overall 5-year survival rate is still lower than 20%. Therefore, in-depth exploration of the pathogenesis of lung cancer has important clinical significance for the development of new diagnosis and treatment strategies and further improvement of patient survival. Metabolic reprogramming is a crucial way for tumors to maintain malignant biological behavior. Previous studies have shown that fatty acid metabolism reprogramming has profound effects on tumorigenesis and progression of lung cancer, suggesting that targeting lung cancer fatty acid metabolism might be an important direction for the development of new anti-tumor regimens. This paper, focusing on the reprogramming of fatty acid metabolism, reviewed the relationship between fatty acid metabolism and lung cancer progression from the aspects of the key protein molecules involved in each procedure of fatty acid metabolism (including uptake, synthesis, storage and decomposition), and discussed the application status and challenges of anti-tumor therapy targeting fatty acid metabolism, expecting to provide clues and insights for the development of novel treatment regimen for lung cancer

    Composite Hydrogels with the Simultaneous Release of VEGF and MCP-1 for Enhancing Angiogenesis for Bone Tissue Engineering Applications

    Get PDF
    Rapid new microvascular network induction was critical for bone regeneration, which required the spatiotemporal delivery of growth factors and transplantation of endothelial cells. In this study, the linear poly(d,l-lactic-co-glycolic acid)-b-methoxy poly(ethylene glycol) (PLGA-mPEG) block copolymer microspheres were prepared for simultaneously delivering vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1). Then, vascular endothelial cells (VECs) with growth factor loaded microspheres were composited into a star-shaped PLGA-mPEG block copolymer solution. After this, composite hydrogel (microspheres ratio: 5 wt%) was formed by increasing the temperature to 37 °C. The release profiles of VEGF and MCP-1 from composite hydrogels in 30 days were investigated to confirm the different simultaneous delivery systems. The VECs exhibited a good proliferation in the composite hydrogels, which proved that the composite hydrogels had a good cytocompatibility. Furthermore, in vivo animal experiments showed that the vessel density and the mean vessel diameters increased over weeks after the composite hydrogels were implanted into the necrosis site of the rabbit femoral head. The above results suggested that the VECs-laden hydrogel composited with the dual-growth factor simultaneous release system has the potential to enhance angiogenesis in bone tissue engineering

    Synergistic effects of hybrid conductive nanofillers on the performance of 3D printed highly elastic strain sensors

    Get PDF
    In this work, thermoplastic polyurethane based conductive polymer composites containing carbon nanotubes (CNTs) and synthesized silver nanoparticles (AgNPs) were used to fabricate highly elastic strain sensors via fused deposition modeling. The printability of the materials was improved with the introduction of the nanofillers, and the size and content of the AgNPs significantly influenced the sensing performance of the 3D printed sensors. When the CNTs:AgNPs weight ratio was 5:1, the sensors exhibited outstanding performance with high sensitivity (GF = 43260 at 250% strain), high linearity (R 2 = 0.97 within 50% strain), fast response (~57 ms), and excellent repeatability (1000 cycles) due to synergistic effects. A modeling study based on the Simmons' tunneling theory was also undertaken to analyze the sensing mechanism. The sensor was applied to monitor diverse joint movements and facial motion, showing its potential for application in intelligent robots, prosthetics, and wear-able devices where customizability are usually demanded

    Enhanced B7-H4 expression in gliomas with low PD-L1 expression identifies super-cold tumors.

    Get PDF
    BACKGROUND: Characterizing expression profiles of different immune checkpoint molecules are promising for personalized checkpoint inhibitory immunotherapy. Gliomas have been shown as potential targets for immune checkpoint inhibitors recently. Our study was performed to determine coexpression levels of two major B7 immune regulatory molecules programmed death ligand 1 (PD-L1) and B7-H4, both of which have been demonstrated to inhibit antitumor host immunity in gliomas. METHODS: We assessed tumor tissues from stage II-IV primary gliomas (n=505) by immunohistochemistry (IHC) for protein levels of both PD-L1 and B7-H4. Gene coexpression analysis assessing clusters based on extent of PD-L1/B7-H4 classifier genes expression were investigated in two transcriptome datasets (The Cancer Genome Atlas and Chinese Glioma Genome Atlas). In addition, levels of immune cell infiltrates were estimated with IHC and RNA-seq data for assessing the tumor immune microenvironment of PD-L1/B7-H4 subgroups. RESULTS: High expression of PD-L1 and B7-H4 in gliomas was 23% and 20%, respectively, whereas coexpression of two proteins at high levels was limited to 2% of the cases. Comparable results were seen in RNA-seq datasets where PD-L1 mRNA expression levels negatively correlated with that of B7-H4. Gene coexpression modules clustered within each grade of gliomas demonstrated lack of double-high modules (cluster with high expression of both PD-L1 and B7-H4 classifier genes). B7-H4 mRNA expression levels showed negative correlation with extent of immune cell infiltration and High-B7-H4 module gliomas (high B7-H4 but low PD-L1 classifier genes expression) had less tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs). IHC assessment also showed few TILs and TAMs in High-B7-H4 subgroup gliomas. CONCLUSIONS: The majority of gliomas express PD-L1 or B7-H4, however, coexpression of both at high levels is minimal. The high-B7-H4 patients could be considered as \u27super-cold\u27 gliomas with significantly deficient in TILs, suggesting that B7-H4 might inhibit T-cell trafficking into the central nervous system. This study demonstrated that PD-L1 and B7-H4 may serve as mutually compensatory immune checkpoint molecules in gliomas for immune targeted or active-specific immunotherapy. The distinct B7-H4 pathways modulating T-cell function and immune evasion in glioma patients deserved to be further explored in the future during immunotherapy
    • …
    corecore