325 research outputs found

    An Enhanced Dipole Model Based Micro-Macro Description for Constitutive Behavior of MRFs

    Get PDF
    The validity of the two conventional micro-macro descriptions for MRFs, based respectively on the exact dipole model and the simplified dipole model, is examined with the results obtained with the commercially available finite element (FE) code ANSYS. It is found that although the simplified dipole model can match better the result by FE computation, there is still a marked difference. An enhanced dipole model is then suggested, which takes into account the contribution of the magnetized particles to magnetic field. Making use of a statistical approach and neglecting the interaction between particle chains, a micro-macro approach is developed for the evaluation of the yield shear stress of MRFs. It can take into account the effects of all the main influencing factors, and can well replicate the main characteristics of the constitutive behavior of MRFs. The method and the results presented are significant for the analysis and optimization of the mechanical properties of MRFs, and for the design of high-performance MRFs

    Endothelial Cell-Specific Molecule 2 (Ecsm2) Localizes To Cell-Cell Junctions And Modulates Bfgf-Directed Cell Migration Via The Erk-Fak Pathway

    Get PDF
    Background: Despite its first discovery by in silico cloning of novel endothelial cell-specific genes a decade ago, the biological functions of endothelial cell-specific molecule 2 (ECSM2) have only recently begun to be understood. Limited data suggest its involvement in cell migration and apoptosis. However, the underlying signaling mechanisms and novel functions of ECSM2 remain to be explored. Methodology/Principal Findings: A rabbit anti-ECSM2 monoclonal antibody (RabMAb) was generated and used to characterize the endogenous ECSM2 protein. Immunoblotting, immunoprecipitation, deglycosylation, immunostaining and confocal microscopy validated that endogenous ECSM2 is a plasma membrane glycoprotein preferentially expressed in vascular endothelial cells (ECs). Expression patterns of heterologously expressed and endogenous ECSM2 identified that ECSM2 was particularly concentrated at cell-cell contacts. Cell aggregation and transwell assays showed that ECSM2 promoted cell-cell adhesion and attenuated basic fibroblast growth factor (bFGF)-driven EC migration. Gain or loss of function assays by overexpression or knockdown of ECSM2 in ECs demonstrated that ECSM2 modulated bFGF-directed EC motility via the FGF receptor (FGFR)-extracellular regulated kinase (ERK)-focal adhesion kinase (FAK) pathway. The counterbalance between FAK tyrosine phosphorylation (activation) and ERK-dependent serine phosphorylation of FAK was critically involved. A model of how ECSM2 signals to impact bFGF/FGFR-driven EC migration was proposed. Conclusions/Significance: ECSM2 is likely a novel EC junctional protein. It can promote cell-cell adhesion and inhibit bFGF-mediated cell migration. Mechanistically, ECSM2 attenuates EC motility through the FGFR-ERK-FAK pathway. The findings suggest that ECSM2 could be a key player in coordinating receptor tyrosine kinase (RTK)-, integrin-, and EC junctional component-mediated signaling and may have important implications in disorders related to endothelial dysfunction and impaired EC junction signaling. © 2011 Shi et al

    Study on Construction Resource Optimization and Uncertain Risk of Urban Sewage Pipe Network

    Get PDF
    With considering sewage pipe network upgrading projects in the “villages” in cities, the optimization of construction resources and the assessment of delay risks could be achieved. Based on the schedule-cost hypothetical theory, the mathematical model with constraint indicators was established to obtain the expression of optimal resource input, and conclude the method to analyze the schedule uncertainties. The analysis showed that cyclical footage of pipe could be regarded as a relatively fixed value, and the cost can be regarded as a function that depending on the number of working teams. The optimal number of teams and the optimal schedule occurred when the minimum total cost achieved. In the case of insufficient meteorological data, the Monte Carlo simulation method and uncertainty analysis method can be applied to assess the impact of rainfall on the total construction period, correspondingly the probability of such risk could be derived. The calculation showed that the risk of overdue completion varied significantly according to the construction starting time. It was necessary to take rainfall risk into consideration and make corresponding strategies and measures

    Paradoxical attenuation of early amyloid-induced cognitive impairment and synaptic plasticity in an aged APP/Tau bigenic rat model

    Get PDF
    The combination of amyloid beta and tau pathologies leads to tau-mediated neurodegeneration in Alzheimer’s disease. However, the relative contributions of amyloid beta and tau peptide accumulation to the manifestation of the pathological phenotype in the early stages, before the overt deposition of plaques and tangles, are still unclear. We investigated the longitudinal pathological effects of combining human-like amyloidosis and tauopathy in a novel transgenic rat model, coded McGill-R-APPxhTau. We compared the effects of individual and combined amyloidosis and tauopathy in transgenic rats by assessing the spatiotemporal progression of Alzheimer’s-like amyloid and tau pathologies using biochemical and immunohistochemical methods. Extensive behavioral testing for learning and memory was also conducted to evaluate cognitive decline. Additionally, we investigated brain inflammation, neuronal cell loss, as well as synaptic plasticity through acute brain slice electrophysiological recordings and Western blotting. Evaluation of Alzheimer’s-like amyloidosis and tauopathy, at the initial stages, unexpectedly revealed that the combination of amyloid pathology with the initial increment in phosphorylated tau exerted a paradoxical corrective effect on amyloid-induced cognitive impairments and led to a compensatory-like restoration of synaptic plasticity as revealed by electrophysiological evidence, compared to monogenic transgenic rats with amyloidosis or tauopathy. We discovered elevated CREB phosphorylation and increased expression of postsynaptic proteins as a tentative explanation for the improved hippocampal synaptic plasticity. However, this tau-induced protective effect on synaptic function was transient. As anticipated, at more advanced stages, the APPxhTau bigenic rats exhibited aggravated tau and amyloid pathologies, cognitive decline, increased neuroinflammation, and tau-driven neuronal loss compared to monogenic rat models of Alzheimer’s-like amyloid and tau pathologies. The present findings propose that the early accumulation of phosphorylated tau may have a transient protective impact on the evolving amyloid pathology-derived synaptic impairments

    PARTNER: Level up the Polar Representation for LiDAR 3D Object Detection

    Full text link
    Recently, polar-based representation has shown promising properties in perceptual tasks. In addition to Cartesian-based approaches, which separate point clouds unevenly, representing point clouds as polar grids has been recognized as an alternative due to (1) its advantage in robust performance under different resolutions and (2) its superiority in streaming-based approaches. However, state-of-the-art polar-based detection methods inevitably suffer from the feature distortion problem because of the non-uniform division of polar representation, resulting in a non-negligible performance gap compared to Cartesian-based approaches. To tackle this issue, we present PARTNER, a novel 3D object detector in the polar coordinate. PARTNER alleviates the dilemma of feature distortion with global representation re-alignment and facilitates the regression by introducing instance-level geometric information into the detection head. Extensive experiments show overwhelming advantages in streaming-based detection and different resolutions. Furthermore, our method outperforms the previous polar-based works with remarkable margins of 3.68% and 9.15% on Waymo and ONCE validation set, thus achieving competitive results over the state-of-the-art methods.Comment: ICCV 202

    Structural and Functional Characterization of Two Alternative Splicing Variants of Mouse Endothelial Cell-Specific Chemotaxis Regulator (ECSCR)

    Get PDF
    Endothelial cells (ECs) that line the lumen of blood vessels are important players in blood vessel formation, and EC migration is a key component of the angiogenic process. Thus, identification of genes that are specifically or preferentially expressed in vascular ECs and in-depth understanding of their biological functions may lead to discovery of new therapeutic targets. We have previously reported molecular characterization of human endothelial cell-specific molecule 2 (ECSM2)/endothelial cell-specific chemotaxis regulator (ECSCR). In the present study, we cloned two mouse full-length cDNAs by RT-PCR, which encode two putative ECSCR isoform precursors with considerable homology to the human ECSCR. Nucleotide sequence and exon-intron junction analyses suggested that they are alternative splicing variants (ECSCR isoform-1 and -2), differing from each other in the first and second exons. Quantitative RT-PCR results revealed that isoform-2 is the predominant form, which was most abundant in heart, lung, and muscles, and moderately abundant in uterus and testis. In contrast, the expression of isoform-1 seemed to be more enriched in testis. To further explore their potential cellular functions, we expressed GFP- and FLAG-tagged ECSCR isoforms, respectively, in an ECSCR deficient cell line (HEK293). Interestingly, the actual sizes of either ECSCR-GFP or -FLAG fusion proteins detected by immunoblotting are much larger than their predicted sizes, suggesting that both isoforms are glycoproteins. Fluorescence microscopy revealed that both ECSCR isoforms are localized at the cell surface, which is consistent with the structural prediction. Finally, we performed cell migration assays using mouse endothelial MS1 cells overexpressing GFP alone, isoform-1-GFP, and isoform-2-GFP, respectively. Our results showed that both isoforms significantly inhibited vascular epidermal growth factor (VEGF)-induced cell migration. Taken together, we have provided several lines of experimental evidence that two mouse ECSCR splicing variants/isoform precursors exist. They are differentially expressed in a variety of tissue types and likely involved in modulation of vascular EC migration. We have also defined the gene structure of mouse ECSCR using bioinformatics tools, which provides new information towards a better understanding of alternative splicing of ECSCR

    Key predisposing factors and susceptibility assessment of landslides along the Yunnan–Tibet traffic corridor, Tibetan plateau: Comparison with the LR, RF, NB, and MLP techniques

    Get PDF
    The Yunnan–Tibet traffic corridor runs through the Three Rivers Region, southeastern Tibetan Plateau, which is characterized by high-relief topography and active tectonics, with favourable conditions for landslides. It is of great significance to identify the key predisposing factors of landslides and to reveal the landslide susceptibility in this area. A total of 2,308 landslides were identified as learning samples through remote sensing interpretation and detailed field surveys, and four machine learning algorithms involving logistic regression (LR), random forest (RF), naïve Bayes (NB) and multilayer perceptron (MLP) were compared to model the landslide susceptibility. Through the multicollinearity test, 13 influential factors were selected as conditioning factors. The area under the curve (AUC) values of LR, RF, NB and MLP models are .788, .918, .785 and .836 respectively, indicating that the four models have good or very good prediction accuracy in landslide susceptibility assessment along the Yunnan–Tibet traffic corridor. In addition, the elevation, slope, rainfall, distance to rivers, and aspect play a major role in landslide development in the study area. The susceptibility zoning map based on the best RF model shows that the areas with high susceptibility and very high susceptibility account for 12.24% and 6.72%, respectively, and are mainly distributed along the Jinsha River, the Lancang River and the G214 highway
    corecore