
Key predisposing factors and
susceptibility assessment of
landslides along the Yunnan–Tibet
traffic corridor, Tibetan plateau:
Comparison with the LR, RF, NB,
and MLP techniques

Sen Wang1, Sixiang Ling1,2*, Xiyong Wu1,2, Hong Wen1,3,
Junpeng Huang1, Feng Wang4 and Chunwei Sun1

1Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China,
2MOE Key Laboratory of High-Speed Railway Engineering, Southwest Jiaotong University, Chengdu, China,
3School of Architecture and Civil Engineering, Xihua University, Chengdu, China, 4School of Information
Technology, University of Sydney, Sydney, NSW, Australia

The Yunnan–Tibet traffic corridor runs through the Three Rivers Region,
southeastern Tibetan Plateau, which is characterized by high-relief topography
and active tectonics, with favourable conditions for landslides. It is of great
significance to identify the key predisposing factors of landslides and to reveal
the landslide susceptibility in this area. A total of 2,308 landslides were identified
as learning samples through remote sensing interpretation and detailed field surveys,
and four machine learning algorithms involving logistic regression (LR), random
forest (RF), naïve Bayes (NB) and multilayer perceptron (MLP) were compared to
model the landslide susceptibility. Through the multicollinearity test, 13 influential
factors were selected as conditioning factors. The area under the curve (AUC) values
of LR, RF, NB and MLP models are .788, .918, .785 and .836 respectively, indicating
that the four models have good or very good prediction accuracy in landslide
susceptibility assessment along the Yunnan–Tibet traffic corridor. In addition, the
elevation, slope, rainfall, distance to rivers, and aspect play a major role in landslide
development in the study area. The susceptibility zoning map based on the best RF
model shows that the areas with high susceptibility and very high susceptibility
account for 12.24% and 6.72%, respectively, and are mainly distributed along the
Jinsha River, the Lancang River and the G214 highway.
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1 Introduction

The Yunnan–Tibet traffic corridor is located in the Three Rivers Region in the southeastern
part of the Qinghai–Tibet Plateau, and the corridor mainly involves the G214 National
Highway and the planned corridor. The Jinsha River, Lancang River, and Nujiang River
flow southward parallel to the Three Rivers Region. The geological environment is fragile due to
steep terrain, substantial river incision, active tectonic activity, weak lithology, and frequent
earthquakes (Zhang et al., 2000; Zhang et al., 2016). These internal and external dynamics of
geological processes provide favourable conditions for the occurrence of geological hazards,
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especially landslides (Li et al., 2019; Ling et al., 2021; Zhao et al., 2019;
Yan et al., 2022). Landslides are the most critical type of geological
disaster and have the characteristics of a wide distribution area, high
frequency of occurrence, fast movement speed, and severe losses.
Because of the uplift of the Qinghai–Tibet Plateau, the internal and
external dynamic geological processes are enormously intertwined,
and creating complex geological conditions and intense dynamic
valley processes; these processes bring more uncertainty to the
occurrence of landslides in the Yunnan–Tibet traffic corridor (Peng
et al., 2004; Peng et al., 2020). Frequent landslides not only cause heavy
casualties and property losses but also seriously affect the construction
and safe operation of Yunnan–Tibet highways and planned corridors
and restrict the development of the regional economy. However,
landslide investigations in the study area are limited due to factors
such as high elevations, and poor traffic conditions. Therefore, it is of
great significance to integrate the existing survey data, analyse the key
predisposing factors, and predict the potential landslide-prone zones
in the area.

Landslide susceptibility evaluation is based on existing landslide
investigations and evaluates the possibility of landslide occurrence
under a combination of conditioning factors (Niu et al., 2012; Wen
et al., 2022). The common methods for landslide susceptibility
evaluation include deterministic and non-deterministic methods
(Kavzoglu et al., 2019). The deterministic method is mainly based
on the quantitative calculation of slope stability. Non-deterministic
methods mainly include mathematical analytical methods, such as the
analytic hierarchy process, fuzzy comprehensive evaluation,
information method, probability ratio, logistic regression, neural
network, support vector machine, etc. (Yao et al., 2008; Youssef
et al., 2016; Kavzoglu et al., 2019; Huang et al., 2020; Ling et al.,
2022). These methods have achieved good application results in
evaluating regional landslide susceptibility. In recent years, with the
rapid development of artificial intelligence, machine learning
algorithms have been applied by many researchers in the fields of
earthquake prediction, groundwater storage change prediction,
precipitation data correction, and landslide susceptibility mapping
(Yao et al., 2008; Youssef et al., 2016; Kavzoglu et al., 2019; Huang
et al., 2020; Ling et al., 2022). These frequently used algorithms mainly
include regression algorithms, instance-based learning, neural
network (NN) algorithms, Bayesian algorithms, kernel-based
learning algorithms and decision tree (DT) algorithms (Huang
et al., 2022b). However, different algorithm models have their
unique characteristics, and the performance of each model varies
according to the input data, model structure, and accuracy (Nachappa
et al., 2020). Therefore, it is not reliable to use only one algorithm
model for landslide susceptibility assessment in a region, and it
requires comparative evaluation of multiple models.

Logistic regression (LR) algorithm is a kind of regression
algorithms. LR, which is a multivariable analysis model, and can be
used to predict the presence or absence of characteristics or results
according to the values of a group of prediction variables. The
advantages of LR are fast training speed, easy to use and explain.
However, LR cannot be used to solve non-linear problems, because the
decision surface of logical regression is linear, and it is more sensitive
to multicollinearity data (Ayalew and Yamagishi, 2005; Pradhan and
Lee 2010). Pham et al. (2017a) evaluated and compared prediction
capability of Bagging Ensemble Based Alternating Decision Trees
(BADT), LR, and J48 Decision Trees (J48DT) for landslide
susceptibility mapping at part of the Uttarakhand State (India),

and the three landslide models all performed well. Among them,
BADT model has the highest prediction ability in the validation data
set, followed by LR model and J48DT model. Random forest (RF)
algorithm is a kind of DT algorithms, which is an ensemble of
separately trained binary decision trees (Ravì et al., 2016). RF
model can handle a large number of input variables without
deleting variables, and return a very small classification set to
maintain high prediction accuracy (Zhang et al., 2017). In addition,
RF models have no prior assumptions about model dependency and
can handle classified data and continuous data. However, when more
trees are added, the RF model will not over fit, but will produce a small
generalization error (Peters et al., 2007; Ließ et al., 2012). Chen et al.
(2018) used the best-first decision tree, random forest, and naïve Bayes
tree to evaluate the landslide susceptibility in the Longhai area of
China. Comparing the evaluation results of the three models, the RF
has the best performance. Naïve Bayes (NB) algorithm is a kind of
Bayesian algorithms, which is an independent feature model with
simple probability classification. Due to its simplicity of construction
of no requirement of complex iterative parameter estimation scheme,
it has stable classification efficiency and performs well for small-scale
data (Sikorska and Seibert, 2018). However, its shortcomings are also
obvious, because the assumption that the attributes of the NB model
are independent of each other is often untenable in practical
applications. When the number of attributes is large or the
correlation between attributes is good, the classification effect is
poor (Lee et al., 2020). Lee et al. (2020) used NB and Bayesian
network models to draw landslide susceptibility map in
Umyeonsan, Korea. Both of the two models have relatively high
accuracy, and the performance of NB model is slightly better than
that of Bayesian network model. Multilayer perceptron (MLP)
algorithm is a kind of NN algorithms. It is defined as a biological
excitation feed-forward network composed of multiple layers, each
layer containing multiple artificial neuron units (Yan et al., 2006).
Multilayer structure and non-linear activation function enable MLP to
identify non-linearly separable data with high accuracy. However, the
neural unit is prone to death, leading to data diversification and loss
(Kavzoglu et al., 2019). Hong et al. (2019) applied four models, NB,
MLP, kernel logistic regression (KLR), and J48 bagging, to evaluate the
susceptibility of landslides in Youfang area, China. It is found that the
MLP model is the most stable and reasonable.

In this paper, we identified landslides by remote sensing
interpretation and field geological survey verification and
constructed conditioning factor combinations. Then, four machine
learning methods, namely, logistic regression, multilayer
perceptron, random forest, and naïve Bayes, were used to draw
landslide susceptibility index maps. Finally, these results were
compared and evaluated with mathematical methods and
knowledge from field surveys. This study can provide a
reference for the planning and construction of roads, railways,
and hydropower projects in the region.

2 Geological settings

This paper selects the river basin along the G214 National
Highway from Shangri-La County to Bangda town as the study
area, with a total area of 23,858.54 km2. The study area is the
35 km buffer zone on both sides of the highway and the
intersection of the area within the first watershed (Figure 1).
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The study area is located at the southeastern edge of the collisional
extrusion zone between the Eurasian and Indian plates, and the
regional tectonic line is spreading north–south under solid
extrusion. In addition, the neotectonic movements are intense
(Peng et al., 2004). The active fault zones mainly include the
Dêqên–Zhongdian fault zone, the Batang fault zone, the Jinsha
fault zone, the Lancang fault zone, and the Nujiang fault zone
(Chai et al., 2021). The stratigraphy of the region is well
distributed and involves almost all eras, and a wide variety of rocks
is present. Mesozoic terrestrial lacustrine, fluvial mudstone, and
muddy sandstone strata are widely exposed, with significant
thicknesses, complex lithologies, and rapid phase changes, and they
are mostly soft rocks. Some areas contain slate, schist, micrite, and
other metamorphic rocks. Magmatism is active, and the magmatic
bodies are enormous. In addition, sedimentary rocks and early
granites are generally subject to varying degrees of low-temperature
and high-pressure powerful metamorphism.

Regarding geomorphological units, the area is located on the
southeastern edge of the Tibetan Plateau in the middle and
northern sections of the Hengduan Mountains. The area is
characterized by high mountain and valley landscapes, with
intermontane basins and lakes of varying sizes, juxtaposed peaks
and valleys, and consistent spreading directions. The mountains are
steep, most are above 4,000 m in absolute height, and the peaks are

above 5,000 m, some of which reach 6,000 m or more; the peaks have
year-round snow and modern glaciers. Due to the increased
downcutting force of the river, the high mountain valley
terrain is very well developed, with relative height differences
reaching 1,000 to 1,500 m. In the north–central part, away from
the gorge, the plateau surface is at altitudes of 4,200 to 4,300 m,
representing a well-preserved level of ravines, and the tributaries
of the three rivers have slower drops. The whole region is mainly
influenced by the warm and humid air currents of both the
Southeast Pacific Ocean and Southwest Indian Ocean. The
distribution of the annual precipitation in the study area
shows an overall trend of decreasing from southwest to
northeast. At the same time, the seasonal distribution of
precipitation is highly uneven, with distinct rainy and dry
seasons. The rainy season is between June and September and
accounts for more than 80% of the year.

3 Data and methodology

The entire landslide susceptibility assessment process includes the
following five steps (Figure 2): 1) preparing a landslide inventory; 2)
selecting and assessing the landslide conditioning factors; 3) modeling
process using the LR, MLP, RF, and NB models; 4) validating and

FIGURE 1
Location and tectonic map of the study area. (A) Study area location index map. (B) Regional topographic and tectonic map.

Frontiers in Earth Science frontiersin.org03

Wang et al. 10.3389/feart.2022.1100363

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1100363


comparing the susceptibility models; and 5) producing landslide
susceptibility maps.

3.1 Landslide inventory map

Landslide inventory is an essential input data for landslide
modeling, and accurate landslide location is an important
guarantee for reliable landslide susceptibility assessment.

Remote sensing interpretation can be carried out according to
landslide image features (e.g., rock exposure and
vegetation damage) on satellite images and landslide
geomorphological features (e.g., crown, headscarp,
abnormal benches and landslide acceleration mass) on digital
elevation model (DEM). Then, field surveys were carried out to
confirm the landslide characteristics such as the headscarf,
tension cracks, grab ends, undrained depressions, bulges, and
lobes.

FIGURE 2
Flow chart of landslide susceptibility evaluation.

FIGURE 3
Landslide inventory map with interpretation and field validation examples. (A,D) Landslide interpretation from remote sensing images. (B,E) Field
validation photographs corresponding to (A,D), respectively. (C) Landslide inventory map.
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Through remote sensing interpretation of satellite images in the
study area, we identified 2,308 landslide hazard points and verified
80% of landslides through two-month-long field surveys in August
2017 and August 2020. These landslide samples (Figure 3) are mainly
distributed in the Jinsha River valley, Lancang River valley, and along
the G214 highway. ArcGIS software was used to randomly generate
the same number of random points for the landslide samples as the
non-landslide samples (2,308), forming a total data set of
4,616 samples. Of these, 3,232 (70%) samples were randomly
selected for machine learning modelling. The remaining 1,384
(30%) samples were used for model testing, with the same number
of landslide and non-landslide samples in the training and testing
samples.

3.2 Landslide conditioning factors

3.2.1 Preparation of landslide condition factor data
Reviewing the previous literature and combining the geological

characteristics of the region, the following 13 quantifiable extraction
factors were selected: elevation, slope angle, slope aspect, plan
curvature, profile curvature, engineering rock group, distance to
faults, distance to rivers, topographic wetness index (TWI), mean
annual rainfall, normalized difference vegetation index (NDVI), land
cover, and distance to roads (Table 1) (Reichenbach et al., 2018; Yao
et al., 2020). Among them, the basic topographic and geomorphic
factors, such as elevation, slope, aspect, plan curvature, profile
curvature, and TWI, were calculated from the Advanced Land
Observing Satellite (ALOS) World 3D– 30 m (AW3D30) (30 m ×
30 m resolution) data that are freely disclosed by the geographic data
cloud; the engineering rock group and fault data are from the 1:

200,000-scale regional geological map; the NDVI data are calculated
from Landsat-8 remote sensing data (2021.04.23-2021.05.08); and the
data on rivers, roads, rainfall, and land cover are all from online public
data. Considering the actual situation of the study area, a grid unit of
90 m × 90 m was finally selected, with a total of 2,942,534 grids.

Through ArcGIS software, the distribution map of each
conditioning factor was drawn (Figure 4). Among all factors,
specific values cannot be given for engineering rock groups and
land cover types. The data were divided into 6 engineering rock
groups according to the degree of softness and hardness of the
main lithology of the stratum (Yao et al., 2020). Group 1 includes
bulk structure and is mainly composed of Pleistocene and Holocene
strata; Group 2 includes soft and weak rock layers that are mainly
composed of conglomerate, mudstone, and shale; Group 3 contains
softer rock layers that are mainly composed of slate, sandstone, and
muddy tuff; Group 4 contains harder rock layers that are mainly
composed of tuff and dolomite; Group 5 includes hard rock layers that
are mainly composed of ejecta; and Group 6 contains tough rock layers
that are mainly composed of intrusive rocks (Figure 4F). The range of
NDVI values is -1 to 1. When the NDVI is less than 0, the surface is a
water system, glaciers, or snow, and when the NDVI is 0, the surface is
rock or bare soil. When the NDVI is greater than 0, the surface is
vegetation, and when the NDVI is larger, the vegetation is lusher
(Figure 4K).

3.2.2 Multicollinearity test for landslide conditioning
factors

Multicollinearity among evaluation factors should be considered
in screening susceptibility factors (Tamura et al., 2019).
Multicollinearity refers to the fact that the explanatory variables in
the model are not objective and accurate because of the precise or high

TABLE 1 Conditioning factors and data sources.

Type Evaluate factors Data sources

Topography and
geomorphology

Elevation, slope, aspect, plan curvature, profile curvature,
and TWI

Advanced Land Observing Satellite World 3D– 30 m (AW3D30) (30 m
resolution)

https://www.eorc.jaxa.jp/ALOS/en/index_e.htm

Geological structure and
lithology

Engineering rock groups, fault 1:200,000-scale regional geological map

http://www.ngac.org.cn/

Meteorology and hydrology Mean annual rainfall Statistical interpolation of meteorological data in the study area and surrounding
stations from 1981 to 2010

http://data.cma.cn/

River 1:250,000 public geographic data of China Geographic Information Resource
Directory Service System

https://www.webmap.cn/

Human activity Road 1:250,000 public geographic data of China Geographic Information Resource
Directory Service System

https://www.webmap.cn/

Surface coverage NDVI Landsat-8 remote sensing data

https://earthexplorer.usgs.gov

Landcover 30 m Land Cover Data of China Geographic Information Resource Directory
Service System

https://www.webmap.cn/
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correlation (Thompson et al., 2017). This paper tested
multicollinearity by applying the variance inflation factor (VIF)
and tolerance. The VIF is reciprocal to the tolerance values, which
are calculated using Equations 1, 2:

Tolerance � 1 − R2
J (1)

VIF � 1
Tolerance
[ ] (2)

where R2
J is the coefficient of determination of a regression of

explanator j on all the other explanators. The threshold value of
tolerance and theVIF is greater than .1. The closer theVIF value is to 1,

FIGURE 4
(Continued).
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the lighter the multicollinearity is, and vice versa (Thompson et al.,
2017). Generally, 10 is used as the judgement boundary. When the
VIF < 10, there is no multicollinearity; when 10 ≤ VIF <100, there is
strong multicollinearity; and when the VIF ≥ 100, there is severe
multicollinearity. Arabameri et al. (2019) used multicollinearity
analysis to test the topographical, geomorphological, and
environmental factors for landslide susceptibility mapping. In the
current research, the multicollinearity of the thirteen landslide
conditioning factors (LCFs) was tested using SPSS software.

3.3 Landslide susceptibility models

3.3.1 Logistic regression (LR)
The LR is a generalized linear regression analysis model that can

better solve the problem of binary variables in the vulnerability
assessment of geological disasters (Ozdemir and Altural, 2013). In
the current situation, the dependent variable is a binary variable
representing presence or absence of landslide. Where the
dependent variable is binary, the logistic link function is applicable
(Atkinson and Massari, 1998). When the probability of an event is P,
the range of P values is 0–1, and the probability of the event not
occurring is 1- P. When the probability value P is close to 0 or 1, it is
difficult to determine the value of P, so it is necessary to transform the

value of P and take the natural logarithm of P/(1- P), which is called
the Logit transform, that is, Logit P =z, so P is:

P � 1
1 + e−z

(3)
z � β0 + β1x1 + β2x2 + · · · +βnxn (4)

where x1, x2, · · ·, xn is the landslide impact factor; β0 is the constant
term; and β1, β2, · · ·, βn are the regression coefficients.

3.3.2 Multilayer perceptron (MLP)
MLP is a feed-forward artificial neural network model that maps

multiple input data sets to a single output data set (Ramchoun et al.,
2016). A single-layer perceptron can learn only linear functions, while
MLP can also learn non-linear functions, which is suitable for non-
linear problems, such as landslide susceptibility evaluation. The
parameters of MLP mainly include the number of neurons in the
hidden layer and the type of activation function. The role of the
activation function is to introduce non-linearity into the neuron’s
output (Lin et al., 2008; Bui et al., 2016). MLP can use any form of
activation function, but to learn efficiently using the backpropagation
algorithm, the activation function must be restricted to be
differentiable. Commonly used activation functions include
sigmoid, tanh, and ReLU. In the landslide susceptibility mapping,
input layer is the landslide conditioning factors, output layer is the

FIGURE 4
Conditioning factor distribution. (A) elevation; (B) slope; (C) aspect; (D) plan curvature; (E) profile curvature; (F) engineering rock groups; (G) distance to
faults; (H) distance to rivers; (I) rainfall; (J) TWI; (K) NDVI; (L) land cover, and (M) distance to roads.
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result (1 or 0) class, and the hidden layer is the classifying tool (Ermini
et al., 2005; Zare et al., 2013). In this paper, let x = xi, i = 1, 2, . . . 13 be
the vector of the 13 landslide induced factors, y = 1 or 0. The formula
of MLP for classification is

y � f x( ) (5)
where f (x) is an hidden function (Pham et al., 2017b).

3.3.3 Random forest (RF)
RF mainly obtains the optimal classification result through the

voting results of each tree in multiple decision trees (Youssef
et al., 2016). Each decision tree has more comprehensive variable
input information due to the method of replacement and the
data set obtained by randomly obtaining data features. The
model’s robustness can be improved by integrating multiple
decision trees, which can prevent model overfitting (Ravì
et al., 2016). The main feature of the RF model is that it can
give the Gini index of the corresponding input variable, that is,

the importance order of each input variable. In the RF tree,
impurity is used to measure the optimal segmentation, and the
importance of the basic environmental factor is calculated by the
reduction value DGk of the Gini index of environmental factor k
when the node is divided (Masetic and Subasi, 2016). It involves
calculating the percentage of the average Gini reduction in the
sum of the average Gini reductions of all basic environmental
factors, as follows:

Pk �
∑n

h�1∑t
j�1DGkhj

∑m
k�1∑n

h�1∑t
j�1DGkhj

(6)

where m, n, and t are the total numbers of basic environmental
factors, the number of classification trees and the number of
nodes in a single tree, respectively; DGkhj is the reduction value of
the Gini index of the kth factor on the jth node of the hth tree; and
Pk is the kth factor in the severity of the underlying environmental
factors.

TABLE 2 Inspection table for the VIF values of the landslide evaluation factor.

Conditioning factor VIF Conditioning factor VIF Conditioning factor VIF

Elevation 2.25 Engineering rock groups 1.16 Landcover 1.16

Slope 1.91 Distance to faults 1.21 NDVI 1.27

Aspect 1.03 Distance to rivers 1.23 Distance to roads 1.39

Plan curvature 1.65 TWI 2.01 — —

Profile curvature 1.44 Rainfall 1.60 — —

FIGURE 5
Relative importance of landslide conditioning factors.
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3.3.4 Naïve bayes (NB)
NB is a method based on Bayes’ theorem and assumes that feature

conditions are independent of each other (Kavzoglu et al., 2019). First,

through the given training set, with the assumption that the feature
words are independent of each other, the joint probability distribution
is learned from input to output, and then based on the learned model,
X is input to find the output Y that maximizes the posterior probability
(Bhargavi and Jyothi, 2009).

There is a sample data set D � d1, d2,/, dn{ }, and the feature
attribute set corresponding to the sample data is
X � x1, x2,/, xd{ }. The class variable is Y � y1, y2,/, ym{ }, that
is, D can be divided into ym categories. X � x1, x2,/, xd{ } is
independent and random; then, the prior probability of Y is
Pprior=P(Y), and the posterior probability of Y is Ppost=P(Y|X).
The posterior probability obtained by the NB algorithm can be
calculated from the prior probability Ppost=P(Y|X), the evidence
P(X), and the class conditional probability P (X|Y):

P Y|X( ) � P Y( )P X|Y( )
P X( ) (7)

NB is based on the independence of each feature. In the case of a
given category y, the above formula can be further expressed as
follows:

P X
∣∣∣∣Y � y( ) � ∏d

i�1P xi

∣∣∣∣Y � y( ) (8)

FIGURE 6
Landslide susceptibility index maps. (A) LR model (B) RF model (C) NB model (D) MLP model.

TABLE 3 Statistical index results of different models.

Parameters LR RF NB MLP

True postive 494 599 520 531

Ture negitive 509 551 469 513

False positive 183 141 223 179

False negative 198 93 172 161

PPR/% 72.97 80.95 69.99 74.79

NPR/% 71.99 85.56 73.17 76.11

Sensitivity/% 71.39 86.56 75.14 76.73

Specificity/% 73.55 79.62 67.77 74.13

ACC/% 72.47 83.09 71.46 75.43

F1 .72 .84 .72 .76

k .45 .66 .43 .51
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From the above two equations, the posterior probability can be
calculated as follows:

Ppost � P Y|X( ) � P Y( )∏d
i�1P xi|Y( )

P X( ) (9)

Since the number of P(X) is fixed, only the numerator part of the
above formula needs to be compared when comparing the posterior
probability. Therefore, a NB calculation in which the sample data
belong to category yi can be obtained:

P yi

∣∣∣∣x1, x2,/, xd( ) � P yi( )∏d
j�1P xi

∣∣∣∣yi( )
∏d

j�1P xi( ) (10)

3.4 Model validation

Positive predictive rate (PPR), negative predictive rate (NPR),
sensitivity, specificity, accuracy (ACC), F-measure (F1), and
Cohen’s kappa (k) coefficient are seven statistical indicators
that are widely used to define the performance of spatial
models (Pham et al., 2020). The highest value of the statistical
index is 1. The higher the value, the better the model performance
(Chen et al., 2018). The performance of the four models is
evaluated by calculating the above seven statistical index values
of LR, MLP, RF and NB model validation data sets. The formula is
calculated as follows (Huang et al., 2020):

PPR � TP

TP + FP
(11)

NPR � TN

TN + FN
(12)

Sensitivity � TP

TP + FN
(13)

Specificity � TN

FP + TN
(14)

ACC � TP + TN

TP + FP + TN + PN
(15)

F1 � 2 × Sensitivity × PPR

Sensitivity + PPR
(16)

k � ACC − ACC exp

1 − ACC exp
(17)

ACC exp � TP + FN( ) TP + FP( ) + FP + TN( ) TN + FN( )
TP + TN + FP + FN( )2 (18)

where TP (true positive) and TN (true negative) are the numbers of
pixels that are correctly classified as landslides. FP (false positive) and
FN (false negative) are the numbers of pixels that are incorrectly
classified. ACC exp is the expected accuracy.

The receiver operating characteristic (ROC) curve reflects the
relationship between sensitivity and specificity (Mandrekar, 2010).
It is a graph generated at different thresholds from the false positive
rate (1-specificity) on the x-axis and the true positive rate (sensitivity)
on the y-axis. Sensitivity and specificity represent the probability that
the model correctly judges landslides and non-landslides. However,
these two indicators cannot show the overall accuracy of the model
performance, so the area under the curve (AUC) value is generally
used to test the model accuracy. The AUC value refers to the area
enclosed by the ROC curve and the coordinate axis and is an
evaluation index for calculating the performance of the binary
classifier. The AUC value ranges from 0 to 1, and the closer the
AUC value is to 1, the higher the prediction accuracy of the model
(Mandrekar, 2010; Shahabi et al., 2019).

4 Results

4.1 Assessment and comparison of landslide
conditioning factors

By extracting the training data set and performing collinearity
diagnosis on the values of all evaluation factors of each sample, Table 2
is obtained. The results show that the VIF values of all landslide
conditioning factors are lower than the threshold value of 10, of which
the maximum value is only 2.25 and the minimum value is 1.03. There
is no multicollinearity problem among the factors influencing the
landslides in the study area, and all proposed landslide conditioning
factors are suitable for use in the study area.

In the process of landslide modelling through a machine learning
algorithm, the importance of each conditioning factor can be obtained
by analysing the characteristics of variables. The importance obtained
by different algorithms is inconsistent, as shown in Figure 5. If the
importance of each conditional factor is equal, the importance of the
conditional factor is 1/13, equal to .077. We believe that the condition
factor with importance greater than .077 is the main factor controlling
the landslide development. In the LR model, elevation, slope, distance
to rivers and distance to roads are the main factors; in the MLP model,
elevation, rainfall and plan curvature are the main factors; in the RF
model, elevation, slope, distance to rivers, profile curvature, aspect,
rainfall and distance to roads are the main factors; in the NB model,
aspect, plan curvature, slope, rainfall and distance to faults are the
main factors. Among the four models, the elevation, slope and rainfall
importance of three models are the main factors; the distance to rivers,

FIGURE 7
ROC curve of the prediction rate for the RF, MLP, NB, and LR
models with the validation data set.
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FIGURE 8
Landslide-prone zoning using the (A) LRmethod, (B) RFmethod, (C)NBmethod, and (D)MLPmethod. VLS, very low susceptibility; LS, low susceptibility;
MS, moderate susceptibility; HS, high susceptibility; VHS, very high susceptibility.

FIGURE 9
Quantitative analysis of the landslide susceptibility maps. (A) Area proportion of the domain in each susceptibility class. (B) Proportion of landslides in
each susceptibility class.
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aspect, distance to roads, distance to faults and plan curvature
importance of two models are the main factors; the profile
curvature importance of one model is the main factor; and the
TWI, NDVI, landcover and engineering rock groups importance of
none model are the main factors. It can be found that topographic
factors (elevation, slope, aspect, plan curvature, and profile curvature),
meteorological and hydrological factors (rainfall and distance to
rivers), human activity factor (distance to roads) and tectonic
factor (distance to faults) are of higher importance.

4.2 Generating landslide susceptibility maps

The probability distributions of landslide occurrence predicted by
the four models, LR, RF, NB, and MLP, are shown in Figure 6. The
landslide-prone locations in the four distribution maps are roughly the
same, and they are all distributed along rivers, trunk faults, and
highways, which is also consistent with the results obtained from
field surveys and theoretical analysis. However, the four distribution
maps have their characteristics and shortcomings. In the distribution
map of the LR model, the area surrounding Markam County is
displayed in red, indicating that the landslide susceptibility in this
area is generally high. However, in addition to the river valley and the
area along the highway, it includes many mountains. Compared with
other model distribution maps, the area is too large, and the
distribution is unreasonable. In the MLP model, the distribution of
high-susceptibility regions is more reasonable. However, the
probability of landslide occurrence is concentrated at both ends of
0 and 1, which causes a steep change in the evaluation result from low
susceptibility to high susceptibility. This result does not match the
actual situation. The RF and NB model distribution maps show
relatively clear and coherent evaluation results. The distribution of
high-risk areas also follows the characteristics of distribution along
river valleys and highways, which are more reasonable.

4.3 Validation of the models

The performance of the applied models was assessed and
compared using statistical indices (Table 3). For the performance
of the landslide testing data set, the RF model (PPR = 80.95%, NPR =
85.56%, sensitivity = 86.56%, specificity = 79.62%, ACC = 83.09%, F1 =
.84, and k = .66) performs the best, followed by MLP (PPR = 74.79%,
NPR = 76.11%, sensitivity = 76.73%, specificity = 74.13%, ACC =
75.43%, F1 = .76, and k = .51), LR (PPR = 72.97%, NPR = 71.99%,
sensitivity = 71.39%, specificity = 73.55%, ACC = 72.47%, F1 = .72, and
k = .45), and NB (PPR = 69.99%, NPR = 73.17%, sensitivity = 75.14%,
specificity = 67.77%, ACC = 71.46%, F1 = .72, and k = .43).

The ROC curves of LR, RF, NB and MLP models were drawn by
extracting the landslide susceptibility probability values of the test
sample points in each model, combined with the actual value of
landslide occurrence at the test sample points (Figure 7). The AUC
values of the LR, RF, NB, and MLP models are .788, .918, .785, and
.836, respectively, all of which are greater than .7. When the AUC
value ≤.5, the result has no predictive value; when .5 < AUC value ≤.7,
the model accuracy is low; when .7 < AUC value ≤.9, the model
accuracy is high; when .9 < AUC value ≤1, the model has very high
accuracy (Chen et al., 2017). The AUC accuracy of the four models is
high or very high, indicating that the susceptibility partitions of the

four models can better predict the regional landslide susceptibility.
Among them, the AUC value of the RF model is greater than .9, and
the evaluation results are excellent. The order of accuracy of the four
models is RF > MLP > LR > NB.

5 Discussion

5.1 Key predisposing factor analysis

Calculate the average value of the importance of each model
landslide conditioning factor in Figure 5, and the factors according
to their importance are in the following order: elevation, slope, rainfall,
distance to rivers, aspect, distance to roads, distance to faults, profile
curvature, plan curvature, TWI, NDVI, land cover, and engineering
rock group. Since the average importance is greater than .077,
elevation, slope, rainfall, distance to rivers and aspect are the main
factors controlling landslide development in the study area. The
elevation indicates the potential energy of the slope and controls
the stability of the slope to a large extent (Hong et al., 2020). It affects
not only the water content and stress in the slope but also the strength
of human engineering activities and the vegetation distribution on the
slope surface. The slope reflects the steepness and gentleness of the
surface and controls the stability of the slope body to a certain extent.
As the slope increases, there is a strong stress concentration at the foot
of the slope, which easily causes landslides under the induction of
other factors (Kavzoglu et al., 2019). Rainfall has always been
considered as the main inducement of landslide. Rainfall
infiltration can increase the weight of the slope, enhance the pore
water pressure, and reduce the shear strength of the slope forming
materials, leading to the loss of slope stability (Yan et al., 2019). The
river has cut and eroded the bank of the slope for a long time,
especially in the flood season, which has greatly increased the free
face of the front edge of the slope, creating natural conditions for the
occurrence of geological disasters, mainly in the spatial distribution of
landslides (Zhao et al., 2019). The slope aspect shows the inclination
direction of the slope, which has a certain control over the formation
and distribution of landslides in the study area. In particular, many
aspects show significant differences between sunny and shady slopes.
In the study area, the south-facing slope is exposed to the sun for a
longer time, with stronger radiation, more luxuriant vegetation and a
higher weathering degree. Therefore, the rock and soil mass
characteristics in different slope directions are different, and the
geological disasters developed on them are different spatially (Hong
et al., 2017).

5.2 Model performance and comparison

The LR model is more inclined to solve linear problems (Pradhan
and Lee, 2010). For the non-linear susceptibility evaluation with
13 evaluation factors, the adaptability of the LR model is relatively
poor, and the accuracy of the evaluation results is relatively low. The
specific performance indicates that the probability distribution of
landslide occurrence is unreasonable, and the AUC value is almost
at the bottom of the four models. The processing power of RF models
for high-dimensional data sets is excellent (Zhang et al., 2017). It can
process thousands of input variables and determine the essential
variables. In addition, it has the advantages of anti-interference and
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high-accuracy (Merghadi et al., 2020). In landslide susceptibility
evaluation research, its performance has always been relatively
stable and the performance is the best in this study. The NB model
is less sensitive to missing data, and the algorithm is relatively simple
(Sikorska and Seibert, 2018). When the NB model has a given output
category and a large number of attributes, the classification effect is not
good (Lee et al., 2020). This result leads to the lowest AUC value of this
model. The MLP model has outstanding adaptability to the fitting of
non-linear problems (Kavzoglu et al., 2019). The MLP model has a
remarkable property: if enough neurons and layers are present, it is
theoretically possible to learn arbitrary input‒output functions (Yan
et al., 2006). Therefore, it performed well in this study. In conclusion,
the study shows that the RF model is more suitable for landslide
susceptibility evaluation in this area than the MLP, LR, and NB
models.

5.3 Landslide-prone zoning

The landslide susceptibility index values were normalized and
classified into five susceptibility classes (very low, low, moderate, high,
and very high) using the natural break method by LR, RF, NB, and
MLP (Figure 8). Compared with the classification methods such as
defined intervals, equal intervals, quantiles, and standard deviations,
the natural break method depends on the intrinsic features of the
dataset and has no subjective opinions (Chen and Zhang, 2021), so it
was adopted in this study. The area and landslide proportion in each
landslide susceptibility class are shown in Figure 9.

In general, the area proportions of domains as very low, low,
moderate, high and very high susceptibility classes of each model that
decrease sequentially (Figure 9A). The area proportions of LR, RF and
NB are similar, while the very low susceptibility class of MLP accounts
for 62.84%, which is the majority. Overall, the proportion of landslides
in the very low, low, moderate, high and very high susceptibility classes
of each model increases sequentially (Figure 9B). Among them, the
proportion of landslides in the very high susceptibility class of the RF
model is the highest, reaching 89.25%, presenting the most efficient
model for landslide prediction, followed by the MLP model (73.87%),
while the proportion of landslides in the NB and LR models is the
lowest. This finding is consistent with the ROC curve verification
results.

In the RF model with the most reasonable prediction, very high,
high, moderate, low and very low susceptibility zones accounted for
6.72%, 12.24%, 18.70%, 25.31% and 37.02% of the total area,
respectively (Figure 9A). Among them, the total area of very low
and low prone areas is close to 2/3, and these areas are mainly
distributed in the gentle plateau area to the west of the Tenasserim
chain and the peak area of alpine valleys. The total area of high and
very high prone areas is close to 1/5, and these areas are mainly
distributed in the Jinsha River and its tributaries, the Lancang River
and its tributaries, and the steep canyon areas along the G214 highway
(Figure 8B). These areas overlap greatly with human activities and
pose significant security risks. The development of landslide hazards is
affected by plate movement. The continuous uplift of the
Qinghai–Tibet Plateau has created deep and steep river valley
landforms, and the river valleys are often distributed along faults,
resulting in the fragmentation of the bank slope rock mass and the
development of fissures (Peng et al., 2004). In addition, the runoff on
the bank slope surface is large. Therefore, the infiltration of rainfall

and ice and snow melt water increases the water content of the bank
slope, thereby increasing the pore water pressure inside the rock and
soil mass; the freeze‒thaw cycle causes the joints and fissures to
expand and penetrate. The cutting slope at the foot of the slope or
the scouring of the river makes the front edge of the slope form a void
and weakens the supporting force (Zhao et al., 2019). Under the
superposition of these factors, the slope body cracks and slips under
the action of gravity, forming a failure process of local sliding at the
leading edge to creeping, pulling, and cracking, and then to overall
sliding. For example, as shown in Figure 3D, the slope toe of
Jianwangtong landslide was unstable due to long-term scouring by
the river, resulting in traction sliding as a whole.

5.4 Limitations

Some limitations and uncertainty should be noted in this study.
First, due to the large area of the study area and the limitation of
computer computing ability, the grid size of 90 m * 90 m is selected in
this paper. This grid is so large that multiple landslides may be
included in the same grid. These landslides may be on both banks
of the river and at different elevations of the same slope, but they
are all given the same parameters, resulting in a certain degree of
distortion of the input data of the condition factors. Different
algorithm models have their unique characteristics, and the
performance of each model variables according to the input
data (Nachappa et al., 2020). This will eventually lead to the
deviation of landslide susceptibility assessment results. Second,
the spatial resolution of some condition factors is inconsistent
(such as elevation, engineering rock group and distance to rivers).
Although it is difficult to accurately define the uncertainty caused
by the inconsistent spatial resolution (Rahman et al., 2021), the
interpolation and extraction made in the process of unifying the
condition factor data into 90 m resolution will also affect the
assessment results of each model, Especially the model with high
sensitivity to input data.

6 Conclusion

Based on the results of this study, the following can be concluded:

1) This paper obtained 2,308 landslide sample data points and
established a relatively complete landslide catalogue database.
The elevation, slope, aspect, plan curvature, profile curvature,
topographic wetness index, distance to rivers, mean annual
rainfall, engineering rock group, distance to faults, normalized
difference vegetation index, land cover, and distance to roads were
selected as conditioning factors. By calculating the influential factor
importance, it was found that the elevation, slope, rainfall, distance
to rivers, and aspect play a significant role.

2) Four susceptibility index distribution maps were obtained using
the LR, RF, NB, and MLP machine learning algorithms to train the
model. AUC values of LR, RF, NB and MLP model test samples
were .788, .918, .785, and .836, respectively. The results show that
these four models have good prediction accuracy and are suitable
for landslide susceptibility evaluation of the Yunnan–Tibet traffic
corridor in the Three Rivers Region. Based on the distribution of
the AUC values and susceptibility index, it was found that the
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evaluation result of the RF model is the most reasonable in
this area.

3) Using the natural break method, the landslide susceptibility index
values of the RF model were divided into five susceptibility classes:
very high, high, moderate, low, and very low, with area ratios of
6.72%, 12.24%, 18.70%, 25.31% and 37.02%, respectively. The
zones of high and very high landslide susceptibility are mainly
distributed in the Jinsha River and its tributaries, the Lancang River
and its tributaries, and the steep canyons along the G214 highway.
The very low and low susceptibility zones are distributed in the
gentle plateau area to the west of the Tenasserim chain and the
peak areas of the alpine valleys. Affected by plate movement, the
mountains in this area are towering and constantly rising, and the
accompanying active faults break the rock mass and develop
fissures, which makes the rivers strongly undercut and sidecut,
thereby forming a steep river valley with unloading belts. Affected
by topography, traffic engineering should be constructed along
river valleys and face the threat of severe landslides and other
geological slope disasters. The results can provide a scientific basis
and reference for landslide disaster prevention and mitigation
work in the major construction of traffic corridor in the three
parallel river areas.
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