9 research outputs found

    Preparation of nano-selenium from chestnut polysaccharide and characterization of its antioxidant activity

    Get PDF
    Chestnut is widely cultivated and has high nutritional value due to its richness in polysaccharides. In order to improve the antioxidant activity of chestnut polysaccharide, chestnut polysaccharide (CP) was extracted by ultrasonic-assisted water extraction and alcohol precipitation and purified by cellulose DEAE-52 exchange and Sephadex G-100 chromatography in this study. CP isolates were characterized by I2-KI reaction, three-strand helical structure analysis, infrared spectrum analysis, and nuclear magnetic resonance detection. The results showed that CP is a pyrylan sugar with triple helical structure and connected by α-glycosidic bonds, with sugar residues 1,4-α-D-Glcp, 1,6-α-D-Galp, 1,5-α-L-Araf, 1,4-α-L-Rhap, and 1,4-β-D-Glcp in the CP backbone. After purification, the branching structure, rod, and spherical structure were significantly increased, with reduced lamellar structure. The in vitro scavenging rates of CP at 10 mg·mL−1 against DPPH, hydroxyl radicals, and ABTS were 88.95, 41.38, and 48.16%, respectively. The DPPH free radical scavenging rate of purified polysaccharide fraction CP-1a was slightly enhanced, and the other rates showed a small decrease. Selenized chestnut polysaccharide (CP-Se) was prepared using nano-selenium method. The selenization method was optimized and stable Se-CP was obtained. When the concentration was 5 mg·mL−1, Se-CP had significantly higher scavenging abilities 89.81 ± 2.33, 58.50 ± 1.60, and 40.66 ± 1.91% for DPPH, hydroxyl radical, and ABTS radicals, respectively, than those of CP. The results of this study provide insight into the effects purification and selenization of chestnut polysaccharide on antioxidant activity, and also provide a theoretical basis for the development of chestnut polysaccharide for use in functional foods or health products

    Preparation of Cement Composites with Ordered Microstructures via Doping with Graphene Oxide Nanosheets and an Investigation of Their Strength and Durability

    No full text
    The main problem with cement composites is that they have structural defects, including cracks, holes, and a disordered morphology, which significantly affects their strength and durability. Therefore, the construction of cement composites with defect-free structures and high strength and long durability is an important research topic. Here, by controlling the size and chemical groups of graphene oxide nanosheets (GONs) used for doping, we were able to control the entire cement matrix to form an ordered microstructure consisting of polyhedron-like crystals and exhibit flower-like patterns. The cracks and holes in the cement matrix just about vanished. The compressive and flexural strengths as well as the parameters for the durability assessment of the corresponding cement composites obviously improved compared with the control samples. Thus, the formation mechanism of the cement matrix with the ordered microstructure is proposed, and a proper explanation is given to regulation action

    Preparation of Regular Cement Hydration Crystals and Ordered Microstructures by Doping GON and an Investigation into Its Compressive and Flexural Strengths

    No full text
    In this work, we found that by controlling the size of the graphene oxide nanosheets (GON) at 5–140 nm, 5–260 nm and 5–410 nm, respectively, we could prepare regular shaped cement hydration crystals with the shape of nano-needle-like, flower-like, and polyhedron-like crystals, respectively. Together, these crystals formed an ordered structure of cement composites on both the micro and macro levels, and the compressive and flexural strengths of the cement composites obviously increased when compared to the control samples. Our results indicated that the smallest structural unit of regular crystals was the nano-polyhedron-like crystals, which consisted of AFt, AFm, CH, and crystallization C–S–H, and could assemble into regular needle-like crystals, flower-like crystals, and polyhedron-like crystals, as well as an ordered structure on the micro and macro levels. Most of the C-S-H was transferred into a monoclinic system crystals and the remainder played the role of an adhesive in the forming process of regular crystals and structure. The cracks and holes in the cement composites disappeared by the self-repairing effect of the growing hydration crystal. The results indicate that ordered structural cement composites with defect-free structures and high strength can be prepared using GON with a suitable size range

    The Adsorption Capacity of GONs/CMC/Fe3O4 Magnetic Composite Microspheres and Applications for Purifying Dye Wastewater

    No full text
    Graphene oxide nanosheets (GONs)/carboxymethyl chitosan (CMC)/Fe3O4 magnetic composite microspheres (MCMs) were prepared by enclosing Fe3O4 particles with CMC and GONs in turn. The microstructures of GONs and GONs/CMC/Fe3O4 MCMs were characterized by FTIR, XRD, TEM, and SEM. The effects of GON content, pH value, and adsorption time on the adsorption capacity of the MCMs were investigated. The results show that the GONs/CMC/Fe3O4 MCMs have a greater specific surface area and a strong adsorption capacity for dye wastewater. Meanwhile, the adsorption mechanism was investigated, and the results accorded with the pseudo-second-order kinetic model and the Freundlich isotherm model. The search results indicate that GONs/CMC/Fe3O4 MCMs can be used to purify dye wastewater and has an important potential use in the practical purification of dye wastewater

    Anterolateral minithoracotomy versus median sternotomy for the treatment of congenital heart defects: a meta-analysis and systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anterolateral Minithoracotomy (ALMT) for the radical correction of Congenital Heart Defects is an alternative to Median Sternotomy (MS) due to reduce operative trauma accelerating recovery and yield a better cosmetic outcome after surgery. Our purpose is to conduct whether ALMT would bring more short-term benefits to patients than conventional Median Sternotomy by using a meta-analysis of case–control study in the published English Journal.</p> <p>Methods</p> <p>6 case control studies published in English from 1997 to 2011 were identified and synthesized to compare the short-term postoperative outcomes between ALMT and MS. These outcomes were cardiopulmonary bypass time, aortic cross-clamp time, intubation time, intensive care unit stay time, and postoperative hospital stay time.</p> <p>Results</p> <p>ALMT had significantly longer cardiopulmonary bypass times (8.00 min more, 95% CI 0.36 to 15.64 min, p = 0.04). Some evidence proved that aortic cross-clamp time of ALMT was longer, yet not significantly (2.38 min more, 95% CI −0.15 to 4.91 min, p = 0.06). In addition, ALMT had significantly shorter intubation time (1.66 hrs less, 95% CI −3.05 to −0.27 hrs, p = 0.02). Postoperative hospital stay time was significantly shorter with ALMT (1.52 days less, 95% CI −2.71 to −0.33 days, p = 0.01). Some evidence suggested a reduction in ICU stay time in the ALMT group. However, this did not prove to be statistically significant (0.88 days less, 95% CI −0.81 to 0.04 days, p = 0.08).</p> <p>Conclusion</p> <p>ALMT can bring more benefits to patients with Congenital Heart Defects by reducing intubation time and postoperative hospital stay time, though ALMT has longer CPB time and aortic cross-clamp time.</p
    corecore