1,349 research outputs found

    On the weight distributions of several classes of cyclic codes from APN monomials

    Get PDF
    Let mβ‰₯3m\geq 3 be an odd integer and pp be an odd prime. % with pβˆ’1=2rhp-1=2^rh, where hh is an odd integer. In this paper, many classes of three-weight cyclic codes over Fp\mathbb{F}_{p} are presented via an examination of the condition for the cyclic codes C(1,d)\mathcal{C}_{(1,d)} and C(1,e)\mathcal{C}_{(1,e)}, which have parity-check polynomials m1(x)md(x)m_1(x)m_d(x) and m1(x)me(x)m_1(x)m_e(x) respectively, to have the same weight distribution, where mi(x)m_i(x) is the minimal polynomial of Ο€βˆ’i\pi^{-i} over Fp\mathbb{F}_{p} for a primitive element Ο€\pi of Fpm\mathbb{F}_{p^m}. %For p=3p=3, the duals of five classes of the proposed cyclic codes are optimal in the sense that they meet certain bounds on linear codes. Furthermore, for p≑3(mod4)p\equiv 3 \pmod{4} and positive integers ee such that there exist integers kk with gcd⁑(m,k)=1\gcd(m,k)=1 and Ο„βˆˆ{0,1,⋯ ,mβˆ’1}\tau\in\{0,1,\cdots, m-1\} satisfying (pk+1)β‹…e≑2pΟ„(modpmβˆ’1)(p^k+1)\cdot e\equiv 2 p^{\tau}\pmod{p^m-1}, the value distributions of the two exponential sums T(a,b)=\sum\limits_{x\in \mathbb{F}_{p^m}}\omega^{\Tr(ax+bx^e)} and S(a,b,c)=\sum\limits_{x\in \mathbb{F}_{p^m}}\omega^{\Tr(ax+bx^e+cx^s)}, where s=(pmβˆ’1)/2s=(p^m-1)/2, are settled. As an application, the value distribution of S(a,b,c)S(a,b,c) is utilized to investigate the weight distribution of the cyclic codes C(1,e,s)\mathcal{C}_{(1,e,s)} with parity-check polynomial m1(x)me(x)ms(x)m_1(x)m_e(x)m_s(x). In the case of p=3p=3 and even ee satisfying the above condition, the duals of the cyclic codes C(1,e,s)\mathcal{C}_{(1,e,s)} have the optimal minimum distance

    Probing white-matter microstructure with higher-order diffusion tensors and susceptibility tensor MRI.

    Get PDF
    Diffusion MRI has become an invaluable tool for studying white matter microstructure and brain connectivity. The emergence of quantitative susceptibility mapping and susceptibility tensor imaging (STI) has provided another unique tool for assessing the structure of white matter. In the highly ordered white matter structure, diffusion MRI measures hindered water mobility induced by various tissue and cell membranes, while susceptibility sensitizes to the molecular composition and axonal arrangement. Integrating these two methods may produce new insights into the complex physiology of white matter. In this study, we investigated the relationship between diffusion and magnetic susceptibility in the white matter. Experiments were conducted on phantoms and human brains in vivo. Diffusion properties were quantified with the diffusion tensor model and also with the higher order tensor model based on the cumulant expansion. Frequency shift and susceptibility tensor were measured with quantitative susceptibility mapping and susceptibility tensor imaging. These diffusion and susceptibility quantities were compared and correlated in regions of single fiber bundles and regions of multiple fiber orientations. Relationships were established with similarities and differences identified. It is believed that diffusion MRI and susceptibility MRI provide complementary information of the microstructure of white matter. Together, they allow a more complete assessment of healthy and diseased brains

    Interpolation-based Decoding of Nonlinear Maximum Rank Distance Codes

    Get PDF
    In this paper, we formulate a generic construction of MRD codes that covers almost all the newly found MRD codes. Among those MRD codes, we particularly investigate the encoding and decoding of a family of nonlinear MRD codes recently by Otal and Γ–zbudak.acceptedVersio
    • …
    corecore