13 research outputs found

    Chebulic Acid Prevents Methylglyoxal-Induced Mitochondrial Dysfunction in INS-1 Pancreatic β-Cells

    No full text
    To investigate the anti-diabetic properties of chebulic acid (CA) associated with the prevention of methyl glyoxal (MG)-induced mitochondrial dysfunction in INS-1 pancreatic β-cells, INS-1 cells were pre-treated with CA (0.5, 1.0, and 2.0 μM) for 48 h and then treated with 2 mM MG for 8 h. The effects of CA and MG on INS-1 cells were evaluated using the following: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay; glyoxalase 1 (Glo-1) expression via Western blot and enzyme activity assays; Nrf-2, nuclear factor erythroid 2-related factor 2 protein expression via Western blot assay; reactive oxygen species (ROS) production assay; mRNA expression of mitochondrial dysfunction related components (UCP2, uncoupling protein 2; VDAC1, voltage-dependent anion-selective channel-1; cyt c, cytochrome c via quantitative reverse transcriptase-PCR; mitochondrial membrane potential (MMP); adenosine triphosphate (ATP) synthesis; glucose-stimulated insulin secretion (GSIS) assay. The viability of INS-1 cells was maintained upon pre-treating with CA before exposure to MG. CA upregulated Glo-1 protein expression and enzyme activity in INS-1 cells and prevented MG-induced ROS production. Mitochondrial dysfunction was alleviated by CA pretreatment; this occurred via the downregulation of UCP2, VDAC1, and cyt c mRNA expression and the increase of MMP and ATP synthesis. Further, CA pre-treatment promoted the recovery from MG-induced decrease in GSIS. These results indicated that CA could be employed as a therapeutic agent in diabetes due to its ability to prevent MG-induced development of insulin sensitivity and oxidative stress-induced dysfunction of β-cells

    Separation of the Antioxidant Compound Quercitrin from Lindera obtusiloba

    No full text

    Protective effects of chebulic acid on alveolar epithelial damage induced by urban particulate matter

    No full text
    Abstract Background Chebulic acid (CA) isolated from T. chebula, which has been reported for treating asthma, as a potent anti-oxidant resources. Exposure to ambient urban particulate matter (UPM) considered as a risk for cardiopulmonary vascular dysfunction. To investigate the protective effect of CA against UPM-mediated collapse of the pulmonary alveolar epithelial (PAE) cell (NCI-H441), barrier integrity parameters, and their elements were evaluated in PAE. Methods CA was acquired from the laboratory previous reports. UPM was obtained from the National Institutes of Standards and Technology, and these were collected in St. Louis, MO, over a 24-month period and used as a standard reference. To confirm the protection of PAE barrier integrity, paracellular permeability and the junctional molecules were estimated with determination of transepithelial electrical resistance, Western Blotting, RT-PCR, and fluorescent staining. Results UPM aggravated the generation of reactive oxygen species (ROS) in PAE and also decreased mRNA and protein levels of junction molecules and barrier integrity in NCI-H441. However, CA repressed the ROS in PAE, also improved barrier integrity by protecting the junctional parameters in NCI-H411. Conclusions These data showed that CA resulted in decreased UPM-induced ROS formation, and the protected the integrity of the tight junctions against UPM exposure to PAE barrier

    Anti-glycation Effect of Gold Nanoparticles on Collagen

    No full text

    Antioxidant and Physiological Activities of Capsicum annuum Ethanol Extracts

    No full text

    Additional file 1: of Plantamajoside from Plantago asiatica modulates human umbilical vein endothelial cell dysfunction by glyceraldehyde-induced AGEs via MAPK/NF-κB

    No full text
    Figure S1. Advanced glycation end-product formation. Bovine serum albumin and glyceraldehyde were mixed at 37 °C in the dark for 7 days. The fluorescence was measured using fluorescence intensity set at excitation 370 nm and emission 440 nm. (DOCX 71 kb

    Additional file 1: Figure S1. of Protective effects of chebulic acid on alveolar epithelial damage induced by urban particulate matter

    No full text
    The effects of specific inhibitors on UPM-induced intracellular ROS generation. Rotenone (RO, 5 μM) and diphenyleneiodonium (DPI, 10 μM) were pre-treated for 1 h, then UPM (10 μg/mL) was treated for 12 h on NCI-H441 cells. RO; mitochondrial electron transport chain inhibitors, DPI; NAD (P) H oxidase inhibitors. Data are means ± SD of three experiments with triplicate samples and different letters indicate significant differences at p < 0.001 by Tukey’s multiple comparisons test. (DOC 58 kb
    corecore