4,386 research outputs found

    Properties of Microlensing Central Perturbations by Planets in Binary Stellar Systems under the Strong Finite-Source Effect

    Full text link
    We investigate high-magnification events caused by planets in wide binary stellar systems under the strong finite-source effect, where the planet orbits one of the companions. From this, we find that the pattern of central perturbations in triple lens systems commonly appears as a combination of individual characteristic patterns of planetary and binary lens systems in a certain range where the sizes of the caustics induced by a planet and a binary companion are comparable, and the range changes with the mass ratio of the planet to the planet-hosting star. Specially, we find that because of this central perturbation pattern, the characteristic feature of high-magnification events caused by the triple lens systems appears in the residual from the single-lensing light curve despite the strong finite-source effect, and it is discriminated from those of the planetary and binary lensing events and thus can be used for the identification of the existence of both planet and binary companion. This characteristic feature is a simultaneous appearance of two features. First, double negative-spike and single positive-spike features caused by the binary companion appear together in the residual, where the double negative spike occurs at both moments when the source enters and exits the caustic center and the single positive spike occurs at the moment just before the source enters into or just after the source exits from the caustic center. Second, the magnification excess before or after the single positive-spike feature is positive due to the planet, and the positive excess has a remarkable increasing or decreasing pattern depending on the source trajectory.Comment: 12 pages, 3 figures, accepted for publication in Ap

    A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS) Soil Moisture: Retrieval Ensembles

    Get PDF
    Bias correction is a very important pre-processing step in satellite data assimilation analysis, as data assimilation itself cannot circumvent satellite biases. We introduce a retrieval algorithm-specific and spatially heterogeneous Instantaneous Field of View (IFOV) bias correction method for Soil Moisture and Ocean Salinity (SMOS) soil moisture. To the best of our knowledge, this is the first paper to present the probabilistic presentation of SMOS soil moisture using retrieval ensembles. We illustrate that retrieval ensembles effectively mitigated the overestimation problem of SMOS soil moisture arising from brightness temperature errors over West Africa in a computationally efficient way (ensemble size: 12, no time-integration). In contrast, the existing method of Cumulative Distribution Function (CDF) matching considerably increased the SMOS biases, due to the limitations of relying on the imperfect reference data. From the validation at two semi-arid sites, Benin (moderately wet and vegetated area) and Niger (dry and sandy bare soils), it was shown that the SMOS errors arising from rain and vegetation attenuation were appropriately corrected by ensemble approaches. In Benin, the Root Mean Square Errors (RMSEs) decreased from 0.1248 m3/m3 for CDF matching to 0.0678 m3/m3 for the proposed ensemble approach. In Niger, the RMSEs decreased from 0.14 m3/m3 for CDF matching to 0.045 m3/m3 for the ensemble approach.open

    A Planetary lensing feature in caustic-crossing high-magnification microlensing events

    Full text link
    Current microlensing follow-up observations focus on high-magnification events because of the high efficiency of planet detection. However, central perturbations of high-magnification events caused by a planet can also be produced by a very close or a very wide binary companion, and the two kinds of central perturbations are not generally distinguished without time consuming detailed modeling (a planet-binary degeneracy). Hence, it is important to resolve the planet-binary degeneracy that occurs in high-magnification events. In this paper, we investigate caustic-crossing high-magnification events caused by a planet and a wide binary companion. From this study, we find that because of the different magnification excess patterns inside the central caustics induced by the planet and the binary companion, the light curves of the caustic-crossing planetary-lensing events exhibit a feature that is discriminated from those of the caustic-crossing binary-lensing events, and the feature can be used to immediately distinguish between the planetary and binary companions. The planetary-lensing feature appears in the interpeak region between the two peaks of the caustic-crossings. The structure of the interpeak region for the planetary-lensing events is smooth and convex or boxy, whereas the structure for the binary-lensing events is smooth and concave. We also investigate the effect of a finite background source star on the planetary-lensing feature in the caustic-crossing high-magnification events. From this, we find that the convex-shaped interpeak structure appears in a certain range that changes with the mass ratio of the planet to the planet-hosting star.Comment: 14 pages, 4 figures. Accepted for publication in Ap

    Properties of the Planetary Caustic Perturbation

    Full text link
    Just two of 10 extrasolar planets found by microlensing have been detected by the planetary caustic despite the higher probability of planet detection relative to the central caustic which has been responsible for four extrasolar planet detections. This is because the perturbations induced by the planetary caustic are unpredictable, thus making it difficult to carry out strategic observations. However, if future high-cadence monitoring surveys are conducted, the majority of planetary caustic events including the events by free-floating planets and wide-separation planets would be detected. Hence, understanding the planetary caustic perturbations becomes important. In this paper, we investigate in detail the pattern of the planetary caustic perturbations. From this study, we find three properties of the planetary caustic perturbations. First, planetary systems with the same star-planet separation (s) basically produce perturbations of constant strength regardless of the planet/star mass ratio (q), but the duration of each perturbation scales with sqrt{q}. Second, close planetary systems with the same separation produce essentially the same negative perturbations between two triangular-shaped caustics regardless of q, but the duration of the perturbations scales with sqrt{q}. Third, the positive perturbations for planetary systems with the same mass ratio become stronger as the caustic shrinks with the increasing |log s|, while the negative perturbations become weaker. We estimate the degeneracy in the determination of q that occurs in planetary caustic events. From this, we find that the mass ratio can be more precisely determined as q increases and |log s| decreases. We also find that the degeneracy range of events for which the source star passes close to the planetary caustic is usually very narrow, and thus it would not significantly affect the determination of q.Comment: 5 pages, 3 figures, 2 tables, accepted in MNRA

    Formation mechanism of SiGe nanorod arrays by combining nanosphere lithography and Au-assisted chemical etching

    Get PDF
    The formation mechanism of SiGe nanorod (NR) arrays fabricated by combining nanosphere lithography and Au-assisted chemical etching has been investigated. By precisely controlling the etching rate and time, the lengths of SiGe NRs can be tuned from 300 nm to 1 μm. The morphologies of SiGe NRs were found to change dramatically by varying the etching temperatures. We propose a mechanism involving a locally temperature-sensitive redox reaction to explain this strong temperature dependence of the morphologies of SiGe NRs. At a lower etching temperature, both corrosion reaction and Au-assisted etching process were kinetically impeded, whereas at a higher temperature, Au-assisted anisotropic etching dominated the formation of SiGe NRs. With transmission electron microscopy and scanning electron microscopy analyses, this study provides a beneficial scheme to design and fabricate low-dimensional SiGe-based nanostructures for possible applications

    Distinguishing central perturbations by binary stellar and planetary systems under the moderately strong finite-source effect

    Full text link
    We investigate high-magnification events caused by wide binary stellar and planetary systems under the moderately strong finite-source effect where the diameter of the source star is comparable with the caustics induced by a binary companion and a planet. From this investigation, we find that a characteristic feature in the central perturbations induced by the binary systems commonly appears in a constant range where the size of the caustic induced by the binary companion is between 1.5 and 1.9 times of the diameter of the source, whereas in the central perturbations induced by the planetary systems the feature commonly appears in a range where the ratio of the size of the caustic induced by the planet to the source diameter changes with the planet/primary mass ratio. High-magnification events caused by the binary and planetary systems with the characteristic feature produce a distinctive short-duration bump in the residuals from the single-lensing light curve, where the bump occurs near the time of peak magnification of the events. Because of a well-known planet/binary degeneracy, we compare binary- and planetary-lensing events with the short-duration bump in the residuals. As a result, we find the features of the binary-lensing events that are discriminated from the planetary-lensing events despite the moderately strong finite-source effect and thus can be used to immediately distinguish between the binary and planetary companions. We also find the feature that appears only in binary-lensing events with a very low mass ratio or planetary-lensing events. This implies that the lens systems with the feature have a very low mass binary companion (such as a brown dwarf) or a planet.Comment: 18 pages, 7 figures, accepted by Ap

    Inhibition of Inducible Nitric Oxide Synthase, Cycleooxygenase-2 and Lipid Peroxidation by Methanol Extract of Pericarpium Zanthoxyli

    Get PDF
    Purpose: To explore the antioxidant properties of the methanol extract of Pericarpium Zanthoxyli and its effect on inducible nitric oxide synthase (iNOS), cycleooxygenase-2 (COX-2) and lipopolysaccharides (LPS)-induced cell damage in macrophage cells.Methods: Anti-oxidant activities were tested by measuring free radical scavenging activity (DPPH, NO) and lipid peroxidation levels. The mechanism of anti-oxidant action of Pericarpium Zanthoxyli extractwas determined by Western blot analysis for iNOS and COX-2 expression in LPS-stimulated RAW 264.7 cells.Results: Pericarpium Zanthoxyli extract contained anti-oxidant   components including phenolics (2.456 mg/g), flavonoids (0.127 mg/g) and anthocyanins (20.34 mg/g). The extract exerted significant radicalscavenging activity in a dose-dependent manner. It also inhibited lipid peroxidation and exerted dramatic reducing power (28.9-fold compared with control at a concentration of 1 mg/ml). Production of iNOS induced by LPS was significantly (p < 0.05) inhibited by the extract, suggesting that the extract inhibits nitric oxide (NO) production by suppressing iNOS expression. Strikingly, COX-2 induced by LPS was also significantly (p < 0.05) inhibited by the extract.Conclusion: These results suggest that the methanol extract of Pericarpium Zanthoxyli exerts significant anti-oxidant activity via inhibiting free radicals, iNOS and lipid peroxidation as well as by inhibition of COX-2 enzyme.Keywords: Pericarpium Zanthoxyli, Nitric oxide, iNOS, COX-2, Lipid peroxidation, Antioxidan
    corecore