6,637 research outputs found

    Design and Fabrication of Electrolyte-Supported Tubular SOFC Combined with Supercritical Water Oxidation on Biomass Gas

    Get PDF
    Solid oxide fuel cells (SOFCs) are relatively simple and environmental friendly devices for the production of electricity from hydrocarbons. The use of a high pressure supercritical water (SCW) reactor containing a SOFC has the potential for using a multitude of logistical liquid fuels that would otherwise not be possible in a regular SOFC system. A SOFC-SCW system was designed to allow the anode to be exposed to the pressure and chemical milieu of the supercritical water oxidation reactor. The effects of the amount of water/fuel and oxygen fed into the reactor under SCW conditions at 400 degrees C were studied. The effects on electrochemical performance as well as preliminary results on a number of feed stocks, for example pectin, are also described.open1111Nsciescopu

    Preliminary Studies about Synthesis and Electrical Properties of Ruthenium Doped Lanthanum Strontium Titanate as a Potential Anode of Solid Oxide Fuel Cells

    Get PDF
    The lanthanum strontium titanate (LST) is one of the most representative alternative anode materials. Although it shows low catalytic properties, the disadvantage could be improved by doping of ruthenium which is widely used as catalyst under steam reforming reaction or oxidation reaction. The ruthenium doped lanthanum strontium titanates (LSTRs) powders were synthesized by complex EDTA-citrate method showing well crystallinity. Additionally, the prepared samples were evaluated through various experimental tests. For example, the stability in the reducing atmosphere and chemical compatibility with YSZ electrolyte such as reactivity test in high temperature were confirmed by XRD (X-ray diffraction). And electrical conductivity in wet H-2 atmosphere at 900 degrees C is about 350.6 S/cm, 342.4 S/cm and 179.1 S/cm with sintered bar of LST, LSTR0.02 and LSTR0.05, respectively.open1111Nsciescopu

    Performance of an Anode Supported Solid Oxide Fuel Cell with Indirect Internal Reforming

    Get PDF
    The conversion of fuel into hydrogen-rich gas is necessary for fuel cells. This can be achieved either indirectly in fuel processing systems, in which the hydrocarbon feed is converted in an external catalytic steam reformer, or directly in the fuel cell. In this paper, the unit module of solid oxide fuel cell was assembled by one reformer and four cells. The reformer was fabricated by extruded dummy cell and combined with two cells on each side respectively. The reforming catalyst was coated on internal channel of the dummy cell. The unit module has successfully tested with wet CH4 as fuel and air as oxidant and its maximum power density exceeded 150mW/cm(2) at 750 degrees C.open110Nsciescopu

    Zero-shot keyword spotting for visual speech recognition in-the-wild

    Full text link
    Visual keyword spotting (KWS) is the problem of estimating whether a text query occurs in a given recording using only video information. This paper focuses on visual KWS for words unseen during training, a real-world, practical setting which so far has received no attention by the community. To this end, we devise an end-to-end architecture comprising (a) a state-of-the-art visual feature extractor based on spatiotemporal Residual Networks, (b) a grapheme-to-phoneme model based on sequence-to-sequence neural networks, and (c) a stack of recurrent neural networks which learn how to correlate visual features with the keyword representation. Different to prior works on KWS, which try to learn word representations merely from sequences of graphemes (i.e. letters), we propose the use of a grapheme-to-phoneme encoder-decoder model which learns how to map words to their pronunciation. We demonstrate that our system obtains very promising visual-only KWS results on the challenging LRS2 database, for keywords unseen during training. We also show that our system outperforms a baseline which addresses KWS via automatic speech recognition (ASR), while it drastically improves over other recently proposed ASR-free KWS methods.Comment: Accepted at ECCV-201

    Analysis of Slab and Slab Heater Cover in a Compact Endless Cast and Rolling Mill Process using Finite Element Methods

    Get PDF
    Compact Endless cast and rolling Mill (CEM) processes were developed and used to fabricate steel products such as steel slabs. However, the coiling furnace in this process was very expensive, so a new layout was suggested. As the coiling furnace was removed, the interval among the slab heaters had to be increased. This led to a temperature drop in the slab. The temperature distribution of the slab impacts quality, so new layout was developed. This paper presents a Finite Element Method (FEM) simulation of thermal behavior in the slab employing slab heater covers. All of the simulation results were verified by comparing them with experimental results. The slab moving distance at which the temperature was saturated during the process was determined to consider the steady-state and analyze the temperature distribution of the slab and slab heater. Those results revealed that the efficiency of heat conservation increased by more than 50% using the slab heater cover. Finally, a sensitivity analysis of the slab heater cover was conducted with respect to the cover design. The effects of insulator thickness, the gap distance between the slab and cover, and material parameters such as density, and specific heat were investigated to optimize the design of the slab heater cover to produce the best quality slab.11Ysciescopuskc

    Colored Non-Crossing Euclidean Steiner Forest

    Full text link
    Given a set of kk-colored points in the plane, we consider the problem of finding kk trees such that each tree connects all points of one color class, no two trees cross, and the total edge length of the trees is minimized. For k=1k=1, this is the well-known Euclidean Steiner tree problem. For general kk, a kρk\rho-approximation algorithm is known, where ρ1.21\rho \le 1.21 is the Steiner ratio. We present a PTAS for k=2k=2, a (5/3+ε)(5/3+\varepsilon)-approximation algorithm for k=3k=3, and two approximation algorithms for general~kk, with ratios O(nlogk)O(\sqrt n \log k) and k+εk+\varepsilon

    Cathodic bacterial community structure applying the different co-substrates for reductive decolorization of Alizarin Yellow R

    Get PDF
    Selective enrichment of cathodic bacterial community was investigated during reductive decolorization of AYR fedding with glucose or acetate as co-substrates in biocathode. A clear distinction of phylotype structures were observed between glucose-fed and acetate-fed biocathodes. In glucose-fed biocathode, Citrobacter (29.2%), Enterococcus (14.7%) and Alkaliflexus (9.2%) were predominant, and while, in acetate-fed biocathode, Acinetobacter (17.8%) and Achromobacter (6.4%) were dominant. Some electroactive or reductive decolorization genera, like Pseudomonas, Delftia and Dechloromonas were commonly enriched. Both of the higher AYR decolorization rate (k(AYR) = 0.46) and p-phenylenediamine (PPD) generation rate (k(PPD) = 0.38) were obtained fed with glucose than acetate (k(AYR) = 0.18; k(PPD) = 0.16). The electrochemical behavior analysis represented a total resistance in glucose-fed condition was about 73.2% lower than acetate-fed condition. The different co-substrate types, resulted in alteration of structure, richness and composition of bacterial communities, which significantly impacted the performances and electrochemical behaviors during reductive decolorization of azo dyes in biocathode. (C) 2016 Elsevier Ltd. All rights reserved.11116Ysciescopu

    Postoperative irradiation after implant placement: A pilot study for prosthetic reconstruction

    Get PDF
    published_or_final_versio

    Novel Protocol for the Chemical Synthesis of Crustacean Hyperglycemic Hormone Analogues — An Efficient Experimental Tool for Studying Their Functions

    Get PDF
    The crustacean Hyperglycemic Hormone (cHH) is present in many decapods in different isoforms, whose specific biological functions are still poorly understood. Here we report on the first chemical synthesis of three distinct isoforms of the cHH of Astacus leptodactylus carried out by solid phase peptide synthesis coupled to native chemical ligation. The synthetic 72 amino acid long peptide amides, containing L- or D-Phe3 and (Glp1, D-Phe3) were tested for their biological activity by means of homologous in vivo bioassays. The hyperglycemic activity of the D-isoforms was significantly higher than that of the L-isoform, while the presence of the N-terminal Glp residue had no influence on the peptide activity. The results show that the presence of D-Phe3 modifies the cHH functionality, contributing to the diversification of the hormone pool
    corecore