42 research outputs found

    Music reading expertise modulates visual spans in both music note and English letter reading

    Get PDF
    Poster Session 3: no. 73Conference Theme: Integrating Psychological, Philosophical, Linguistic, Computational and Neural PerspectivesHere we investigated how music reading experience modulates visual spans in language reading. Participants were asked to identify music notes, English letters, Chinese characters, and novel symbols (Tibetan letters) presented at random locations on the screen while maintaining central fixation. We found that for music note reading, musicians outperformed non-musicians at some peripheral positions in both visual fields, and for English letter reading, musicians outperformed non-musicians at some peripheral positions in the RVF but not in the LVF. In contrast, in both Chinese character and novel symbol reading, musicians and non-musicians did not differ in their performance at peripheral positions. Since both music and English reading involve a left-to-right reading direction and a RVF/LH advantage, these results suggest that the modulation of music reading experience on visual spans in language reading depends on the similarities in the cognitive processes involved.postprin

    Enhanced text spacing improves reading performance in individuals with macular disease

    Get PDF
    The search by many investigators for a solution to the reading problems encountered by individuals with no central vision has been long and, to date, not very fruitful. Most textual manipulations, including font size, have led to only modest gains in reading speed. Previous work on spatial integrative properties of peripheral retina suggests that 'visual crowding' may be a major factor contributing to inefficient reading. Crowding refers to the fact that juxtaposed targets viewed eccentrically may be difficult to identify. The purpose of this study was to assess the combined effects of line spacing and word spacing on the ability of individuals with age-related macular degeneration (ARMD) to read short passages of text that were printed with either high (87.5%) or low contrast (17.5%) letters. Low contrast text was used to avoid potential ceiling effects and to mimic a possible reduction in letter contrast with light scatter from media opacities. For both low and high contrast text, the fastest reading speeds we measured were for passages of text with double line and double word spacing. In comparison with standard single spacing, double word/line spacing increased reading speed by approximately 26% with high contrast text (p < 0.001), and by 46% with low contrast text (p < 0.001). In addition, double line/word spacing more than halved the number of reading errors obtained with single spaced text. We compare our results with previous reading studies on ARMD patients, and conclude that crowding is detrimental to reading and that its effects can be reduced with enhanced text spacing. Spacing is particularly important when the contrast of the text is reduced, as may occur with intraocular light scatter or poor viewing conditions. We recommend that macular disease patients should employ double line spacing and double-character word spacing to maximize their reading efficiency. © 2013 Blackmore-Wright et al

    A systematic review on 'Foveal Crowding' in visually impaired children and perceptual learning as a method to reduce Crowding

    Get PDF
    Contains fulltext : 102577.pdf (publisher's version ) (Open Access)Background - This systematic review gives an overview of foveal crowding (the inability to recognize objects due to surrounding nearby contours in foveal vision) and possible interventions. Foveal crowding can have a major effect on reading rate and deciphering small pieces of information from busy visual scenes. Three specific groups experience more foveal crowding than adults with normal vision (NV): 1) children with NV, 2) visually impaired (VI ) children and adults and 3) children with cerebral visual impairment (CVI). The extent and magnitude of foveal crowding as well as interventions aimed at reducing crowding were investigated in this review. The twofold goal of this review is : [A] to compare foveal crowding in children with NV, VI children and adults and CVI children and [B] to compare interventions to reduce crowding. Methods - Three electronic databases were used to conduct the literature search: PubMed, PsycINFO (Ovid), and Cochrane. Additional studies were identified by contacting experts. Search terms included visual perception, contour interaction, crowding, crowded, and contour interactions. Results - Children with normal vision show an extent of contour interaction over an area 1.5-3x as large as that seen in adults NV. The magnitude of contour interaction normally ranges between 1-2 lines on an acuity chart and this magnitude is even larger when stimuli are arranged in a circular configuration. Adults with congenital nystagmus (CN) show interaction areas that are 2x larger than those seen adults with NV. The magnitude of the crowding effect is also 2x as large in individuals with CN as in individuals with NV. Finally, children with CVI experience a magnitude of the crowding effect that is 3x the size of that experienced by adults with NV. Conclusions - The methodological heterogeneity, the diversity in paradigms used to measure crowding, made it impossible to conduct a meta-analysis. This is the first systematic review to compare crowding ratios and it shows that charts with 50% interoptotype spacing were most sensitive to capture crowding effects. The groups that showed the largest crowding effects were individuals with CN, VI adults with central scotomas and children with CVI. Perceptual Learning seems to be a promising technique to reduce excessive foveal crowding effects.14 p

    Postdictive Modulation of Visual Orientation

    Get PDF
    The present study investigated how visual orientation is modulated by subsequent orientation inputs. Observers were presented a near-vertical Gabor patch as a target, followed by a left- or right-tilted second Gabor patch as a distracter in the spatial vicinity of the target. The task of the observers was to judge whether the target was right- or left-tilted (Experiment 1) or whether the target was vertical or not (Supplementary experiment). The judgment was biased toward the orientation of the distracter (the postdictive modulation of visual orientation). The judgment bias peaked when the target and distracter were temporally separated by 100 ms, indicating a specific temporal mechanism for this phenomenon. However, when the visibility of the distracter was reduced via backward masking, the judgment bias disappeared. On the other hand, the low-visibility distracter could still cause a simultaneous orientation contrast, indicating that the distracter orientation is still processed in the visual system (Experiment 2). Our results suggest that the postdictive modulation of visual orientation stems from spatiotemporal integration of visual orientation on the basis of a slow feature matching process

    Misperceptions in the Trajectories of Objects undergoing Curvilinear Motion

    Get PDF
    Trajectory perception is crucial in scene understanding and action. A variety of trajectory misperceptions have been reported in the literature. In this study, we quantify earlier observations that reported distortions in the perceived shape of bilinear trajectories and in the perceived positions of their deviation. Our results show that bilinear trajectories with deviation angles smaller than 90 deg are perceived smoothed while those with deviation angles larger than 90 degrees are perceived sharpened. The sharpening effect is weaker in magnitude than the smoothing effect. We also found a correlation between the distortion of perceived trajectories and the perceived shift of their deviation point. Finally, using a dual-task paradigm, we found that reducing attentional resources allocated to the moving target causes an increase in the perceived shift of the deviation point of the trajectory. We interpret these results in the context of interactions between motion and position systems

    Reexamining the possible benefits of visual crowding: dissociating crowding from ensemble percepts

    Get PDF
    Peripheral objects and their features become indistinct when closely surrounding but nonoverlapping objects are present. Most models suggest that this phenomenon, called crowding, reflects limitations of visual processing, but an intriguing idea is that it may be, in part, adaptive. Specifically, the mechanism generating crowding may simultaneously facilitate ensemble representations of features, leaving meaningful information about clusters of objects. In two experiments, we tested whether visual crowding and the perception of ensemble features share a common mechanism. Observers judged the orientation of a crowded bar, or the ensemble orientation of all bars in the upper and lower visual fields. While crowding was predictably stronger in the upper relative to the lower visual field, the ensemble percept did not vary between the visual fields. Featural averaging within the crowded region does not always scale with the resolution limit defined by crowding, suggesting that dissociable processes contribute to visual crowding and ensemble percepts

    Reducing Crowding by Weakening Inhibitory Lateral Interactions in the Periphery with Perceptual Learning

    Get PDF
    We investigated whether lateral masking in the near-periphery, due to inhibitory lateral interactions at an early level of central visual processing, could be weakened by perceptual learning and whether learning transferred to an untrained, higher-level lateral masking known as crowding. The trained task was contrast detection of a Gabor target presented in the near periphery (4°) in the presence of co-oriented and co-aligned high contrast Gabor flankers, which featured different target-to-flankers separations along the vertical axis that varied from 2λ to 8λ. We found both suppressive and facilitatory lateral interactions at target-to-flankers distances (2λ - 4λ and 8λ, respectively) that were larger than those found in the fovea. Training reduces suppression but does not increase facilitation. Most importantly, we found that learning reduces crowding and improves contrast sensitivity, but has no effect on visual acuity (VA). These results suggest a different pattern of connectivity in the periphery with respect to the fovea as well as a different modulation of this connectivity via perceptual learning that not only reduces low-level lateral masking but also reduces crowding. These results have important implications for the rehabilitation of low-vision patients who must use peripheral vision to perform tasks, such as reading and refined figure-ground segmentation, which normal sighted subjects perform in the fovea
    corecore