35,940 research outputs found

    An analysis of turbulent diffusion flame in axisymmetric jet

    Get PDF
    The kinetic theory of turbulent flow was employed to study the mixing limited combustion of hydrogen in axisymmetric jets. The integro-differential equations in two spatial and three velocity coordinates describing the combustion were reduced to a set of hyperbolic partial differential equations in the two spatial coordinates by a binodal approximation. The MacCormick's finite difference method was then employed for solution. The flame length was longer than that predicted by the flame-sheet analysis, and was found to be in general agreement with a recent experimental result. Increase of the turbulence energy and scale resulted in an enhancement of the combustion rate and, hence, in a shorter flame length. Details of the numerical method as well as of the physical findings are discussed

    Theory of ferromagnetism in (A,Mn)B semiconductors

    Full text link
    A brief review of theory of ferromagnetism of dilute magnetic semiconductors of the form (A,Mn)B based on the double exchange model is first given. A systematic investigation of the phenomena extending the current theory is outlined. We begin with an investigation of the regions of instability of the nonmagnetic towards the ferromagnetic state of a system of Mn-atoms doped in AB-type semiconductor. A self-consistent many-body theory of the ferromagnetic state is then developed, going beyond the mean field approaches by including fluctuations of the Mn-spins and the itinerant hole-gas. A functional theory suitable for computation of system properties such as Curie temperature as a function of hole and the Mn-concentration, spin-current, etc. is formulated.Comment: 16 page

    Dimerized and trimerized phases for spin-2 Bosons in a one-dimensional optical lattice

    Get PDF
    We study the phase diagram for spin-2 bosons loaded in a one-dimensional optical lattice. By using non-Abelian density matrix renormalization group (DMRG) method we identify three possible phases: ferromagnetic, dimerized, and trimerized phases. We sketch the phase boundaries based on DMRG. We illustrate two methods for identifying the phases. The first method is based on the spin-spin correlation function while in the second method one observes the excitation gap as a dimerization or a trimerization superlattice is imposed. The advantage of the second method is that it can also be easily implemented in experiments. By using the scattering lengths in the literature we estimate that 83^{83}Rb, 23^{23}Na, and 87^{87}Rb be ferromagnetic, dimerized, and trimerized respectively.Comment: 4 pages, 3 figures. Add acknowledgemen

    Induced Lorentz- and CPT-violating Chern-Simons term in QED: Fock-Schwinger proper time method

    Get PDF
    Using the Fock-Schwinger proper time method, we calculate the induced Chern-Simons term arising from the Lorentz- and CPT-violating sector of quantum electrodynamics with a bμψˉγμγ5ψb_\mu \bar{\psi}\gamma^\mu \gamma_5 \psi term. Our result to all orders in bb coincides with a recent linear-in-bb calculation by Chaichian et al. [hep-th/0010129 v2]. The coincidence was pointed out by Chung [Phys. Lett. {\bf B461} (1999) 138] and P\'{e}rez-Victoria [Phys. Rev. Lett. {\bf 83} (1999) 2518] in the standard Feynman diagram calculation with the nonperturbative-in-bb propagator.Comment: 11 pages, no figur

    Large-scale radio continuum properties of 19 Virgo cluster galaxies The influence of tidal interactions, ram pressure stripping, and accreting gas envelopes

    Get PDF
    Deep scaled array VLA 20 and 6cm observations including polarization of 19 Virgo spirals are presented. This sample contains 6 galaxies with a global minimum of 20cm polarized emission at the receding side of the galactic disk and quadrupolar type large-scale magnetic fields. In the new sample no additional case of a ram-pressure stripped spiral galaxy with an asymmetric ridge of polarized radio continuum emission was found. In the absence of a close companion, a truncated HI disk, together with a ridge of polarized radio continuum emission at the outer edge of the HI disk, is a signpost of ram pressure stripping. 6 out of the 19 observed galaxies display asymmetric 6cm polarized emission distributions. Three galaxies belong to tidally interacting pairs, two galaxies host huge accreting HI envelopes, and one galaxy had a recent minor merger. Tidal interactions and accreting gas envelopes can lead to compression and shear motions which enhance the polarized radio continuum emission. In addition, galaxies with low average star formation rate per unit area have a low average degree of polarization. Shear or compression motions can enhance the degree of polarization. The average degree of polarization of tidally interacting galaxies is generally lower than expected for a given rotation velocity and star formation activity. This low average degree of polarization is at least partly due to the absence of polarized emission from the thin disk. Ram pressure stripping can decrease whereas tidal interactions most frequently decreases the average degree of polarization of Virgo spiral galaxies. We found that moderate active ram pressure stripping has no influence on the spectral index, but enhances the global radio continuum emission with respect to the FIR emission, while an accreting gas envelope can but not necessarily enhances the radio continuum emission with respect to the FIR emission.Comment: 37 pages, 26 figures, accepted for publication in A&

    Quantum Critical Spin-2 Chain with Emergent SU(3) Symmetry

    Get PDF
    We study the quantum critical phase of a SU(2) symmetric spin-2 chain obtained from spin-2 bosons in a one-dimensional lattice. We obtain the scaling of the entanglement entropy and finite-size energies by exact diagonalization and density-matrix renormalization group methods. From the numerical results of the energy spectrum, central charge, and scaling dimension we identify the conformal field theory describing the whole critical phase to be the SU(3)1_1 Wess-Zumino-Witten model. We find that while in the whole critical phase the Hamiltonian is only SU(2) invariant, there is an emergent SU(3) symmetry in the thermodynamic limit
    corecore