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We study the quantum critical phase of an SU(2) symmetric spin-2 chain obtained from spin-2
bosons in a one-dimensional lattice. We obtain the scaling of the finite-size energies and entanglement
entropy by exact diagonalization and density-matrix renormalization group methods. From the
numerical results of the energy spectra, central charge, and scaling dimension we identify the
conformal field theory describing the whole critical phase to be the SUð3Þ1 Wess-Zumino-Witten
model. We find that, while the Hamiltonian is only SU(2) invariant, in this critical phase there is an
emergent SU(3) symmetry in the thermodynamic limit.
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Cold atomic gases in optical lattices have become an
ideal framework for studying quantum many-body sys-
tems in recent years [1]. In particular, various schemes
have been proposed to study quantum magnetism [2]. For
spin 1=2 systems, simulation of the Ising model has been
realized using bosons in a tilted optical lattice [3]. It has
also been proposed that the spin 1=2 XYZ Heisenberg
model can be realized using p-orbital bosons [4]. This
rapid progress in cold atomic physics results in a con-
siderable renewal of interest to study models with higher
spins or higher symmetries, especially for models that are
potentially realizable by cold atomic systems. A natural
direction is to study spinor bosons and their novel phases.
For example, it has been proposed that the spin-1 bilinear
biquadractic (BB) model can be engineered using spin-1
cold bosons in an optical lattice [5,6]. Furthermore, the
phase diagram of spin-1 bosons in a one-dimensional (1D)
lattice has been studied numerically and compared to the
spin-1 BB model [7]. Since spin-2 bosons are available
and have been experimentally studied [8–11], it is of great
interest to explore the phases realizable by spin-2 bosons.
On the other hand, it has also been pointed out that
fermions with hyperfine spin F ¼ 3=2 can be used to
realize models with SO(5) symmetry [12], or to realize an
SU(3) spin chain by effectively suppressing the occupa-
tion of one of the middle states [13]. Possibilities to realize
higher SU(N) symmetry have also been proposed [14,15].
Along this line, spin dynamics and correlation have been
studied experimentally using cold fermions with effective
spin ranging from 1=2 to 9=2 [16,17]. Another interesting
problem is to explore symmetries that emerge in the low
energy limit of the models. Indeed, different aspects of
emergent symmetries have been discussed widely in the
recent literature. Examples include SO(5) and SO(8)

symmetries in high temperature superconductors and
two-leg ladders [18,19], E8 symmetry in Ising spin chains
under a critical transverse field [20], emergent modular
and translational symmetries for quantum Hall states [21]
and fractional Chern insulators [22], and supersymmetry
at sample boundaries of topological phases [23] or at
critical or multicritical points separating different phases
[19], especially for confinement-deconfinement or non-
Landau phase transitions [24].
Recently we studied the phase diagram of spin-2 bosons

in a 1D optical lattice with one particle per site and
identified three possible phases for a finite system: ferro-
magnetic, dimerized, and trimerized phases [25]. Within
the trimerized phase, if the system size is a multiple of 3,
the ground state is a spin singlet with a finite-size gap
and broken lattice symmetry. It was also shown that in
the thermodynamic limit the system became gapless with
unbroken lattice symmetry. The nature of this extended
critical phase was, however, not fully determined. In this
Letter we investigate the extended critical phase of the
spin-2 boson in a 1D lattice. In particular, we identify the
conformal field theory (CFT) describing the low energy
physics of the whole critical phase. By using multiple
diagnostic tools we show that in the thermodynamic limit
the low energy physics of this critical phase is described
by the SUð3Þ1 Wess-Zumino-Witten (WZW) model. This is
the main result of this work.
We begin with the Hamiltonian, which is obtained from

spin-2 bosons in a 1D optical lattice with one particle per
site in the limit of t=US ≪ 1. Here, t is the hopping
between nearest neighbors andUS is the Hubbard repulsion
for two particles with spin S on the same site. Within
second order perturbation theory the effective Hamiltonian
reads
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H ¼
X
i

Hi;iþ1 ¼
X
i

ϵoP0;i;iþ1 þ ϵ2P2;i;iþ1 þ ϵ4P4;i;iþ1;

ð1Þ

where ϵS ¼ −4t2=US. Here, i is the site index, and PS;i;iþ1

denotes the projection operator for sites i and iþ 1 onto a
state with total spin S. We focus on the regime with US > 0
(hence ϵS < 0) to ensure stability for one particle per site.
We use the non-Abelian density matrix renormalization
group (DMRG) method that preserves the SU(2) symmetry.
This not only increases the accuracy and but also allows
us to target any specific total SU(2) spin sector. Within
the DMRG, however, it is more convenient to explicitly
express Hi;iþ1 in terms of spin-2 operators Si, resulting in
Hi;iþ1 ¼

P
4
n¼1 αnðϵ0; ϵ2; ϵ4ÞðSi · Siþ1Þn, where the expres-

sions of αn can be found in Ref. [25]. While the mean-field
and exact phase diagrams have been studied [25,26], the
nature of the critical phase is not known. In the following
we will use the finite-size scaling of the energies and the
entanglement entropy to identify the CFT. Since the whole
critical phase is described by a unique CFT, it suffices to
use one particular parameter set for the determination.
Throughout this Letter, we will use ~ϵ≡ ðϵ0; ϵ2; ϵ4Þ ¼
ð0;−1; 0Þ. This sets the system deep in the trimerized
phase and far from the boundary of the ferromagnetic and
dimerized phases.
We start with the exact diagonalization (ED) to obtain the

low energy spectrum of small size systems with periodic
boundary conditions. In Fig. 1 we show the excitation
spectrum for L ¼ 15. We set the ground state energy to be
zero and use the energy of the S ¼ 2 state at k ¼ 2π=L as
the energy unit (for the reason described later in the Letter).
We find that the ground state has S ¼ 0 when the system
size is a multiple of 3. Furthermore, we observe that there
is a period-3 structure and soft modes develop at
k ¼ �2π=3ðmod2πÞ, with a cluster of low energy states

with S ¼ 0; 1; 2. The period-3 structure and the fact that a
gapped trimerized state is formed for a finite-size chain
strongly suggests that the critical theory has approximate
SU(3) symmetry at finite sizes. The observation above
allows us to rule out some models as the potential CFT of
the critical phase. Since our Hamiltonian is SU(2) sym-
metric, the corresponding CFT must contain SU(2) as a
subgroup. SUkð2Þ models are natural candidates; however,
their spectrum would have minima at k ¼ π rather than
�2π=3, and the spin correlations have period 2 rather than
period 3. Consequently, one can rule out SUkð2Þ models as
the associated CFT. On the other hand, the low energy
spectrum is compatible with the DMRG calculation results
for the SU(3) Heisenberg model in Ref. [27] and the ED
results of the spin-1 BB model in the critical period-3 phase
[28]. This makes the SUð3Þ1 WZW model with central
charge c ¼ 2 an appealing candidate.
For the SUð3Þ1 WZW model the soft modes at

k ¼ �2π=3 should have a degeneracy that matches the
dimension of the SU(3) representation. Here, because the
bare Hamiltonian has SU(2) but not SU(3) symmetry,
for a finite-size system it is natural that the energies at
k ¼ �2π=3 will split according to the SU(2) spin as
observed in Fig. 1. However, the S ¼ 3; 4 states at k ¼ 0
have lower energies than the states at k ¼ �2π=3. These
low energy states are not expected if the critical theory is
the SUð3Þ1 WZW model. We shall argue that the presence
of these states is due to the proximity to the ferromagnetic
phase and the lack of SU(3) symmetry in the Hamiltonian.
We shall provide more details on this point below. Since the
SU(3) symmetry is only emergent, it is then not surprising
that non-CFT behavior is observed for small sizes.
However, we expect that for sufficiently large sizes, their
rescaled energies will move up and the low energy
spectrum will become fully consistent with the CFT. In
the following we shall use the DMRG method to calculate
the energies of the states that are consistent with the SUð3Þ1
WZW model. The finite-size scaling of these energies then
are used to identify the CFT. While we can no longer
specify the momenta of the excited states in the DMRG, we
can target a particular SU(2) spin sector to obtain the low
energy states needed.
Before studying the excited states, we first use the finite-

size scaling of the ground state energy to estimate the
central charge c. According to the CFT, for a system with
sizeL, the ground state energyE0ðLÞ should scale as [35,36]

E0ðLÞ
L

¼ ϵ∞ −
π

6L2
cv; ð2Þ

where ϵ∞ is the ground state energy per site in the
thermodynamic limit and v is the spin-wave velocity. In
Fig. 2(a) we show the finite-size scaling of the ground state
energy EgðLÞ with L ¼ 12–30, from which we find
ðπ=6Þcv ¼ 1.3968. To find c we need to estimate the value
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FIG. 1 (color online). Rescaled energy spectrum obtained from
exact diagonalization with L ¼ 15 and ~ϵ ¼ ð0;−1; 0Þ.
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of v, which is determined by the energy of the state at
k ¼ 2π=L. In order to decide which state at k ¼ 2π=L
should be used, we resort to the excitation spectrum of the
spin-1 BB model. For the spin-1 BB model at the SU(3)
point, we find that at k ¼ 2π=L the S ¼ 1; 2 states are
degenerate, indicating that the spin-wave excitation belongs
to the 8 or 8̄ representation of the SU(3) group [28].
In contrast, for our spin-2 model the S ¼ 1; 2 states at
k ¼ 2π=L are split due to the absence of SU(3) symmetry
for the Hamiltonian. In this work we use the S ¼ 2 state at
k ¼ 2π=L to define the spin-wave velocity (alternative
choices only make minor differences, see Ref. [28]) and
set the energy scale in Fig. 1. It corresponds to the first
excited state in the S ¼ 2 sector and its energy can be
obtained accurately by the non-Abelian DMRG method.
In Fig. 2(b) we show the L-dependent velocity vðLÞ as a
function ofL. By extrapolation of vðLÞ as vþ a=L2 þ b=L4

we find v ¼ 1.2643. Combined with the value of cv above
we find that c ¼ 2.11, which is very close to the expected
value of c ¼ 2 for the SUð3Þ1 WZW model [28].
To further support the CFT to be the SUð3Þ1 WZW

model we estimate the scaling dimensions xi, which are
related to the scaling of the excited state energies EiðLÞ as

EiðLÞ − E0ðLÞ
L

¼ 2πv
L2

�
xi þ

di
lnL

�
; ð3Þ

where xi ¼ hL þ hR and di is the coefficient of the
logarithmic correction due to the marginal operator.
Here, hL ¼ h0L þmL and hR ¼ h0R þmR, where h0L, h

0
R

correspond to the holomorphic and antiholomorphic con-
formal weights of the primary fields, and mL and mR are
non-negative integers describing descendant fields. When
the system size is a multiple of 3, the lowest energy states

at k ¼ �2π=3 are expected to belong to the representation
3 × 3̄ with hL ¼ hR ¼ 1=3 [27]. Since the Hamiltonian has
SU(2) symmetry but not SU(3) symmetry, the excited state
energies split according to their SU(2) spin S. Furthermore,
states with different S will pick up a different logarithmic
correction dS. Fortunately, they can be removed by using
the sum rule

P
Sð2Sþ 1ÞdS ¼ 0 [37]. By using the

appropriate average of the excited states, one can define
an L-dependent scaling dimension xðLÞ [28]. In Fig. 2(c)
we show xðLÞ as a function of L. By extrapolating xðLÞ as
xþ a=L2 þ b=L4 we find x ¼ 0.628. This agrees well with
the expected value x ¼ 2=3 of the SUð3Þ1 WZW model.
The above results on the central charge c and scaling
dimension x confirm the CFT to be the SUð3Þ1 WZW
model. One can argue that another possibility is the SUð3Þ2
model. However, it has c ¼ 3.2, which makes it unlikely to
be the correct CFT. Furthermore, we find that the excitation
spectrum of the SUð3Þ2 model is not compatible with our
ED result. The SUð3Þ2 model thus can be safely excluded.
In the calculations above we keep m ¼ 2800 states of the
SU(2) reduced basis. This is equivalent to about 25000
standard DMRG states. We have checked that m is big
enough to ensure that the results are in the finite-size
scaling regime as distinct from the finite entanglement
regime [28].
In the above we obtained the central charge c by

considering the ground state energy. In recent years the
finite-size scaling of the entanglement entropy (EE) instead
has been used intensively to estimate the central charge.
Consider a system with periodic boundary conditions.
The EE of a subsystem of size l is the von Neumann
entropy of the reduced density matrix ρl of the subsystem:
SðlÞ ¼ −Trðρl log ρlÞ. It is known that for 1D conformal
invariant critical system of size L, the EE scales asymp-
totically as [38]

Sðl; LÞ ¼ c
3
log

�
L
π
sin

�
πl
L

��
þ S0; ð4Þ

where c is the central charge of the CFT and S0 is a
nonuniversal constant. Within the DMRG it is straightfor-
ward to calculate Sðl; LÞ once the optimized ground state
is obtained. The accuracy of the DMRG calculation is
controlled by the truncation dimension m and the result is
numerically exact in the limit of m → ∞. For a given pair
of L and m we fit Eq. (4) to obtain an effective central
charge cðL;mÞ. In Fig. 3 we plot cðL;mÞ as a function
of m for several system sizes. To our surprise we observe
enormous finite-size and truncation effects. A similar
phenomenon is also reported for the critical S ¼ 1=2
XXZ chain, but only when the system is extremely close
to the ferromagnetic boundary with an emerging ferromag-
netic length scale [39]. Here, we have set the system
to be far away from the ferromagnetic boundary but a
pronounced effect is still observed. In general cðL;mÞ is a
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FIG. 2. (a) Finite-size scaling of the ground state energy EgðLÞ.
(b) Finite-size scaling of the spin-wave velocity vðLÞ. (c) Finite-
size scaling of the scaling dimension xðLÞ, which is obtained
from excited state energies by applying the sum rule as described
in the text.
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decreasing function of L but an increasing function of m.
The true central charge is obtained in the limit of
c ¼ cðL → ∞; m → ∞Þ, while cðL;m → ∞Þ provides
an upper bound for c. Because of the enormous finite-size
and truncation effects, we find it difficult to accurately
determine the value of c from EE scaling, but certain
bounds can be estimated. From the smaller size data where
cðL;mÞ already saturates as m increases, we find strong
evidence that c⪅3. This again excludes the SUð3Þ2 model
with c ¼ 3.2. For the largest L ¼ 120 used we find that
cðL; 2800Þ > 2, which is consistent with the SU1ð3Þmodel
with c ¼ 2. For an even larger L it is expected that an even
larger m ≫ 2800 (m ≫ 25000 standard DMRG states) is
needed, which is however beyond the typical size of
DMRG calculations.
Some comments are now in order. First, we find that

there are similarities between the extended critical phase of
the spin-2 model and the extended critical period-3 phase of
the spin-1 BB model [37]. For both models there are
period-3 structures and gapped trimerized states are formed
for finite-size chains. Furthermore, the corresponding
critical theory is the SUð3Þ1 WZW model in both cases.
There are, however, some crucial differences. The spin-1
BB model has an enlarged SU(3) symmetry when the
strengths of the bilinear and biquadractic terms are the
same, but the spin-2 model is never SU(3) symmetric
within the phase space available, except when ϵ0;2;4 are all
equal where one has SU(5) symmetry. It is only in the
thermodynamic limit that the SU(3) symmetry emerges.
Furthermore, the critical phase of the spin-1 BB model is
not accessible from spin-1 bosons in the lattice, while for
the spin-2 model the critical phase is accessible from spin-2
bosons.
Second, we observe that by using the finite-size scaling

of the energies, data from smaller sizes are enough to

precisely identify the CFT. In contrast, it is difficult to
identify the CFT via the finite-size scaling of the EE with
typical computational resources. The physical picture is as
follows. Because of the proximity to the ferromagnetic
phase, there is a competition between the conformally
invariant state and the permutation symmetric state. The
two kinds of states have very different EE scaling behavior,
leading to enormous finite-size and truncation effects [39].
Analysis based on energy scaling is less sensitive to such a
competition and accurate results for central charge and
scaling dimensions can be obtained from smaller size data.
Our picture is also consistent with the existence of
anomalous low energy states beyond the CFT prediction,
for example, the S ¼ 3; 4 states at k ¼ 0 in Fig. 1. They
appear because at a small length scale the system looks
ferromagnetic. While their energies are lower than the
states associated with the primary field at small sizes, it is
expected that for larger sizes their rescaled energy will
move up to higher energies and become irrelevant.
In contrast the rescaled energy of the states at k ¼ 2π=3
will converge to 2=3 when SU(3) symmetry emerges at
larger sizes.
It is also natural to ask what kind of experimental

signature can be observed. Because of the nonlocal nature
of the EE, it is not easy to measure the EE directly.
Recently, there are proposals to measure the related
quantities, the Rényi entropies, within the cold atom
framework [40]. It has also been shown that the influence
of the ferromagnetic state and the value of the effective
central charge can be detected and measured via
Rényi entropies [41]. It is thus in principle possible to
experimentally verify the findings here with cold atom
experiments.
In summary, we study the critical phase of the spin-2

model obtained from spin-2 bosons in a 1D lattice. By
using multiple approaches we identify the critical theory to
be the SUð3Þ1 WZW model. The Hamiltonian is never
SU(3) symmetric but SU(3) symmetry emerges in the
thermodynamic limit.
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