701 research outputs found

    Westerbork Ultra-Deep Survey of HI at z=0.2

    Get PDF
    In this contribution, we present some preliminary observational results from the completed ultra-deep survey of 21cm emission from neutral hydrogen at redshifts z=0.164-0.224 with the Westerbork Synthesis Radio Telescope. In two separate fields, a total of 160 individual galaxies has been detected in neutral hydrogen, with HI masses varying from 1.1x10^9 to 4.0x10^10 Msun. The largest galaxies are spatially resolved by the synthesized beam of 23x37 arcsec^2 while the velocity resolution of 19 km/s allowed the HI emission lines to be well resolved. The large scale structure in the surveyed volume is traced well in HI, apart from the highest density regions like the cores of galaxy clusters. All significant HI detections have obvious or plausible optical counterparts which are usually blue late-type galaxies that are UV-bright. One of the observed fields contains a massive Butcher-Oemler cluster but none of the associated blue galaxies has been detected in HI. The data suggest that the lower-luminosity galaxies at z=0.2 are more gas-rich than galaxies of similar luminosities at z=0, pending a careful analysis of the completeness near the detection limit. Optical counterparts of the HI detected galaxies are mostly located in the 'blue cloud' of the galaxy population although several galaxies on the 'red sequence' are also detected in HI. These results hold great promise for future deep 21cm surveys of neutral hydrogen with MeerKAT, APERTIF, ASKAP, and ultimately the Square Kilometre Array.Comment: 10 pages, 9 figures, Proceedings of ISKAF2010 Science Meeting: A New Golden Age for Radio Astronomy, June 10-14 2010, Assen, the Netherlands. Edited by J. van Leeuwen. Movies of rendered rotating data cubes are available at http://www.astro.rug.nl/~verheyen/BUDHIES/index.htm

    The Neuroscience of Mathematical Cognition and Learning

    Get PDF
    The synergistic potential of cognitive neuroscience and education for efficient learning has attracted considerable interest from the general public, teachers, parents, academics and policymakers alike. This review is aimed at providing 1) an accessible and general overview of the research progress made in cognitive neuroscience research in understanding mathematical learning and cognition, and 2) understanding whether there is sufficient evidence to suggest that neuroscience can inform mathematics education at this point. We also highlight outstanding questions with implications for education that remain to be explored in cognitive neuroscience. The field of cognitive neuroscience is growing rapidly. The findings that we are describing in this review should be evaluated critically to guide research communities, governments and funding bodies to optimise resources and address questions that will provide practical directions for short- and long-term impact on the education of future generations
    • 

    corecore