11 research outputs found

    Oxygen Partial Pressure during Pulsed Laser Deposition: Deterministic Role on Thermodynamic Stability of Atomic Termination Sequence at SrRuO3/BaTiO3 Interface

    Full text link
    With recent trends on miniaturizing oxide-based devices, the need for atomic-scale control of surface/interface structures by pulsed laser deposition (PLD) has increased. In particular, realizing uniform atomic termination at the surface/interface is highly desirable. However, a lack of understanding on the surface formation mechanism in PLD has limited a deliberate control of surface/interface atomic stacking sequences. Here, taking the prototypical SrRuO3/BaTiO3/SrRuO3 (SRO/BTO/SRO) heterostructure as a model system, we investigated the formation of different interfacial termination sequences (BaO-RuO2 or TiO2-SrO) with oxygen partial pressure (PO2) during PLD. We found that a uniform SrO-TiO2 termination sequence at the SRO/BTO interface can be achieved by lowering the PO2 to 5 mTorr, regardless of the total background gas pressure (Ptotal), growth mode, or growth rate. Our results indicate that the thermodynamic stability of the BTO surface at the low-energy kinetics stage of PLD can play an important role in surface/interface termination formation. This work paves the way for realizing termination engineering in functional oxide heterostructures.Comment: 27 pages, 6 figures, Supporting Informatio

    Low cost, high performance robot design utilizing off-the-shelf parts and the Beowulf concept, The Beobot project

    Get PDF
    ©2003 SPIE--The International Society for Optical Engineering. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The electronic version of this article is the complete one and can be found online at: http://dx.doi.org/10.1117/12.515180Presented at Intelligent Robots and Computer Vision XXI: Algorithms, Techniques, and Active Vision, 28 October 2003, Providence, RI, USADOI: 10.1117/12.515180Utilizing off the shelf low cost parts, we have constructed a robot that is small, light, powerful and relatively inexpensive (< $3900). The system is constructed around the Beowulf concept of linking multiple discrete computing units into a single cooperative system. The goal of this project is to demonstrate a new robotics platform with sufficient computing resources to run biologically-inspired vision algorithms in real-time. This is accomplished by connecting two dual-CPU embedded PC motherboards using fast gigabit Ethernet. The motherboards contain integrated Firewire, USB and serial connections to handle camera, servomotor, GPS and other miscellaneous inputs/outputs. Computing systems are mounted on a servomechanism-controlled off-the-shelf “Off Road” RC car. Using the high performance characteristics of the car, the robot can attain relatively high speeds outdoors. The robot is used as a test platform for biologically-inspired as well as traditional robotic algorithms, in outdoor navigation and exploration activities. Leader following using multi blob tracking and segmentation, and navigation using statistical information and decision inference from image spectral information are discussed. The design of the robot is opensource and is constructed in a manner that enhances ease of replication. This is done to facilitate construction and development of mobile robots at research institutions where large financial resources may not be readily available as well as to put robots into the hands of hobbyists and help lead to the next stage in the evolution of robotics, a home hobby robot with potential real world applications

    Flexoelectric effect in the reversal of self-polarization and associated changes in the electronic functional properties of bifeo3 thin films

    No full text
    Flexoelectricity can play an important role in the reversal of the self-polarization direction in epitaxial BiFeO3 thin films. The flexoelectric and interfacial effects compete with each other to determine the self-polarization state. In Region I, the self-polarization is downward because the interfacial effect is more dominant than the flexoelectric effect. In Region II, the self-polarization is upward, because the flexoelectric effect becomes more dominant than the interfacial effect. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.149501sciescopu

    Oxygen Partial Pressure during Pulsed Laser Deposition: Deterministic Role on Thermodynamic Stability of Atomic Termination Sequence at SrRuO3/BaTiO3 Interface

    No full text
    With recent trends on miniaturizing oxide-baed devices, the need for atomic-scale control of surface/interface structures by pulsed laser deposition (PLD) has increased. In particular, realizing uniform atomic termination at the surface/ interface is highly desirable. However, a lack of understanding on the surface formation mechanism in PLD has limited a deliberate control of surface/interface atomic stacking sequences. Here, taking the prototypical-SrRuO3/BaTiO3/SrRuO3 (SRO/BTO/SRO) heterostructure as a model system, we investigated the formation of different interfacial termination sequences (BaO-RuO2 or TiO2-SrO) with oxygen partial pressure (PO2) during PLD. We found that a uniform SrO TiO2 termination sequence at the SRO/BTO interface can be achieved by lowering the Po-2 to 5 mTorr, regardless of the total background gas pressure (P-total), growth mode, or growth rate. Our results indicate that the thermodynamic stability of the BTO surface at the low-energy kinetics stage of PLD can play an important role in surface/interface termination formation. This work paves the way for realizing termination engineering in functional oxide heterostructures.11Nsciescopu

    Sharpened VO2 Phase Transition via Controlled Release of Epitaxial Strain

    No full text
    Phase transitions in correlated materials can be manipulated at the nanoscale to yield emergent functional properties, promising new paradigms for nanoelectronics and nanophotonics. Vanadium dioxide (VO2), an archetypal correlated material, exhibits a metal insulator transition (MIT) above room temperature. At the thicknesses required for heterostructure applications, such as an optical modulator discussed here, the strain state of VO2 largely determines the MIT dynamics critical to the device performance. We develop an approach to control the MIT dynamics in epitaxial VO2 films by employing an intermediate template layer with large lattice mismatch to relieve the interfacial lattice constraints, contrary to conventional thin film epitaxy that favors lattice match between the substrate and the growing film. A combination of phase-field simulation, in situ real-time nanoscale imaging, and electrical measurements reveals robust undisturbed MIT dynamics even at preexisting structural domain boundaries and significantly sharpened MIT in the templated VO2 films. Utilizing the sharp MIT, we demonstrate a fast, electrically switchable optical waveguide. This study offers unconventional design principles for heteroepitaxial correlated materials, as well as novel insight into their nanoscale phase transitions.1114sciescopu

    Oxygen Partial Pressure during Pulsed Laser Deposition: Deterministic Role on Thermodynamic Stability of Atomic Termination Sequence at SrRuO<sub>3</sub>/BaTiO<sub>3</sub> Interface

    No full text
    With recent trends on miniaturizing oxide-based devices, the need for atomic-scale control of surface/interface structures by pulsed laser deposition (PLD) has increased. In particular, realizing uniform atomic termination at the surface/interface is highly desirable. However, a lack of understanding on the surface formation mechanism in PLD has limited a deliberate control of surface/interface atomic stacking sequences. Here, taking the prototypical SrRuO<sub>3</sub>/BaTiO<sub>3</sub>/SrRuO<sub>3</sub> (SRO/BTO/SRO) heterostructure as a model system, we investigated the formation of different interfacial termination sequences (BaO–RuO<sub>2</sub> or TiO<sub>2</sub>–SrO) with oxygen partial pressure (<i>P</i><sub>O<sub>2</sub></sub>) during PLD. We found that a uniform SrO–TiO<sub>2</sub> termination sequence at the SRO/BTO interface can be achieved by lowering the <i>P</i><sub>O<sub>2</sub></sub> to 5 mTorr, regardless of the total background gas pressure (<i>P</i><sub>total</sub>), growth mode, or growth rate. Our results indicate that the thermodynamic stability of the BTO surface at the low-energy kinetics stage of PLD can play an important role in surface/interface termination formation. This work paves the way for realizing termination engineering in functional oxide heterostructures

    Isostructural metal-insulator transition in VO2

    No full text
    The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities.11Nsciescopu
    corecore