2,605 research outputs found
Recommended from our members
Evidence against a Role of Elevated Intracellular Ca2+ during Plasmodium falciparum Preinvasion.
Severe malaria is primarily caused by Plasmodium falciparum parasites during their asexual reproduction cycle within red blood cells. One of the least understood stages in this cycle is the brief preinvasion period during which merozoite-red cell contacts lead to apical alignment of the merozoite in readiness for penetration, a stage of major relevance in the control of invasion efficiency. Red blood cell deformations associated with this process were suggested to be active plasma membrane responses mediated by transients of elevated intracellular calcium. Few studies have addressed this hypothesis because of technical challenges, and the results remained inconclusive. Here, Fluo-4 was used as a fluorescent calcium indicator with optimized protocols to investigate the distribution of the dye in red blood cell populations used as P. falciparum invasion targets in egress-invasion assays. Preinvasion dynamics was observed simultaneously under bright-field and fluorescence microscopy by recording egress-invasion events. All the egress-invasion sequences showed red blood cell deformations of varied intensities during the preinvasion period and the echinocytic changes that follow during invasion. Intraerythrocytic calcium signals were absent throughout this interval in over half the records and totally absent during the preinvasion period, regardless of deformation strength. When present, calcium signals were of a punctate modality, initiated within merozoites already poised for invasion. These results argue against a role of elevated intracellular calcium during the preinvasion stage. We suggest an alternative mechanism of merozoite-induced preinvasion deformations based on passive red cell responses to transient agonist-receptor interactions associated with the formation of adhesive coat filaments
Reconfigurable quantum metamaterials
By coupling controllable quantum systems into larger structures we introduce
the concept of a quantum metamaterial. Conventional meta-materials represent
one of the most important frontiers in optical design, with applications in
diverse fields ranging from medicine to aerospace. Up until now however,
metamaterials have themselves been classical structures and interact only with
the classical properties of light. Here we describe a class of dynamic
metamaterials, based on the quantum properties of coupled atom-cavity arrays,
which are intrinsically lossless, reconfigurable, and operate fundamentally at
the quantum level. We show how this new class of metamaterial could be used to
create a reconfigurable quantum superlens possessing a negative index gradient
for single photon imaging. With the inherent features of quantum superposition
and entanglement of metamaterial properties, this new class of dynamic quantum
metamaterial, opens a new vista for quantum science and technology.Comment: 16 pages, 8 figure
Multidrug resistance-selective antiproliferative activity of Piper amide alkaloids and synthetic analogues
Twenty-five amide alkaloids (1–25) from Piper boehmeriifolium and 10 synthetic amide alkaloid derivatives (39–48) were evaluated for antiproliferative activity against eight human tumor cell lines, including chemosensitive and multidrug-resistant (MDR) cell lines. The results suggested tumor type-selectivity. 1-[7-(3,4,5-Trimethoxyphenyl)heptanoyl]piperidine (46) exhibited the best inhibitory activity (IC50 = 4.94 µM) against the P-glycoprotein (P-gp)-overexpressing KBvin MDR sub-line, while it and all other tested compounds, except 9, were inactive (IC50 >40 µM) against MDA-MB-231 and SK-BR-3. Structure-activity relationships (SARs) indicated that (i) 3,4,5-trimethoxy phenyl substitution is critical for selectivity against KBvin, (ii) the 4-methoxy group in this pattern is crucial for antiproliferative activity, (iii) double bonds in the side chain are not needed for activity, and (iv), in arylalkenylacyl amide alkaloids, replacement of an isobutylamino group with pyrrolidin-1-yl or piperidin-1-yl significantly improved activity. Further study on Piper amides is warranted, particularly whether side chain length affects the ability to overcome the MDR cancer phenotype
Adding a polyphenol-rich fiber bundle to food impacts the gastrointestinal microbiome and metabolome in dogs
IntroductionPet foods fortified with fermentable fibers are often indicated for dogs with gastrointestinal conditions to improve gut health through the production of beneficial post-biotics by the pet's microbiome.MethodsTo evaluate the therapeutic underpinnings of pre-biotic fiber enrichment, we compared the fecal microbiome, the fecal metabolome, and the serum metabolome of 39 adult dogs with well-managed chronic gastroenteritis/enteritis (CGE) and healthy matched controls. The foods tested included a test food (TF1) containing a novel pre-biotic fiber bundle, a control food (CF) lacking the fiber bundle, and a commercially available therapeutic food (TF2) indicated for managing fiber-responsive conditions. In this crossover study, all dogs consumed CF for a 4-week wash-in period, were randomized to either TF1 or TF2 and fed for 4 weeks, were fed CF for a 4-week washout period, and then received the other test food for 4 weeks.ResultsMeaningful differences were not observed between the healthy and CGE dogs in response to the pre-biotic fiber bundle relative to CF. Both TF1 and TF2 improved stool scores compared to CF. TF1-fed dogs showed reduced body weight and fecal ash content compared to either CF or TF2, while stools of TF2-fed dogs showed higher pH and lower moisture content vs. TF1. TF1 consumption also resulted in unique fecal and systemic metabolic signatures compared to CF and TF2. TF1-fed dogs showed suppressed signals of fecal bacterial putrefactive metabolism compared to either CF or TF2 and increased saccharolytic signatures compared to TF2. A functional analysis of fecal tryptophan metabolism indicated reductions in fecal kynurenine and indole pathway metabolites with TF1. Among the three foods, TF1 uniquely increased fecal polyphenols and the resulting post-biotics. Compared to CF, consumption of TF1 largely reduced fecal levels of endocannabinoid-like metabolites and sphingolipids while increasing both fecal and circulating polyunsaturated fatty acid profiles, suggesting that TF1 may have modulated gastrointestinal inflammation and motility. Stools of TF1-fed dogs showed reductions in phospholipid profiles, suggesting fiber-dependent changes to colonic mucosal structure.DiscussionThese findings indicate that the use of a specific pre-biotic fiber bundle may be beneficial in healthy dogs and in dogs with CGE
Synthesis, Electrical Measurement, and Field Emission Properties of α-Fe2O3Nanowires
α-Fe2O3nanowires (NWs) were formed by the thermal oxidation of an iron film in air at 350 °C for 10 h. The rhombohedral structure of the α-Fe2O3NWs was grown vertically on the substrate with diameters of 8–25 nm and lengths of several hundred nm. It was found that the population density of the NWs per unit area (DNWs) can be varied by the film thickness. The thicker the iron film, the more NWs were grown. The growth mechanism of the NWs is suggested to be a combination effect of the thermal oxidation rate, defects on the film, and selective directional growth. The electrical resistivity of a single NW with a length of 800 nm and a diameter of 15 nm was measured to be 4.42 × 103 Ωcm using conductive atomic force microscopy. The field emission characteristics of the NWs were studied using a two-parallel-plate system. A low turn–on field of 3.3 V/μm and a large current density of 10−3 A/cm2(under an applied field of about 7 V/μm) can be obtained using optimal factors ofDNWsin the cathode
The influence of DNA repair on neurological degeneration, cachexia, skin cancer and internal neoplasms: autopsy report of four xeroderma pigmentosum patients (XP-A, XP-C and XP-D)
BACKGROUND: To investigate the association of DNA nucleotide excision repair (NER) defects with neurological degeneration, cachexia and cancer, we performed autopsies on 4 adult xeroderma pigmentosum (XP) patients with different clinical features and defects in NER complementation groups XP-A, XP-C or XP-D. RESULTS: The XP-A (XP12BE) and XP-D (XP18BE) patients exhibited progressive neurological deterioration with sensorineural hearing loss. The clinical spectrum encompassed severe cachexia in the XP-A (XP12BE) patient, numerous skin cancers in the XP-A and two XP-C (XP24BE and XP1BE) patients and only few skin cancers in the XP-D patient. Two XP-C patients developed internal neoplasms including glioblastoma in XP24BE and uterine adenocarcinoma in XP1BE. At autopsy, the brains of the 44 yr XP-A and the 45 yr XP-D patients were profoundly atrophic and characterized microscopically by diffuse neuronal loss, myelin pallor and gliosis. Unlike the XP-A patient, the XP-D patient had a thickened calvarium, and the brain showed vacuolization of the neuropil in the cerebrum, cerebellum and brainstem, and patchy Purkinje cell loss. Axonal neuropathy and chronic denervation atrophy of the skeletal muscles were observed in the XP-A patient, but not in the XP-D patient. CONCLUSIONS: These clinical manifestations and autopsy findings indicate advanced involvement of the central and peripheral nervous system. Despite similar defects in DNA repair, different clinicopathological phenotypes are seen in the four cases, and therefore distinct patterns of neurodegeneration characterize XP-D, XP-A and XP-C patients
Case report: Infective endocarditis caused by Brevundimonas vesicularis
BACKGROUND: There are few reports in the literature of invasive infection caused by Brevundimonas vesicularis in patients without immunosuppression or other predisposing factors. The choice of antimicrobial therapy for bacteremia caused by the pathogen requires more case experience to be determined. CASE PRESENTATION: The case of a 40-year-old previously healthy man with subacute endocarditis proposed to be contributed from an occult dental abscess is described. The infection was found to be caused by B. vesicularis on blood culture results. The patient recovered without sequelae after treatment with ceftriaxone followed by subsequent ciprofloxacin therapy owing to an allergic reaction to ceftriaxone and treatment failure with ampicillin/sulbactam. CONCLUSION: To our knowledge, this is the first report of B. vesicularis as a cause of infective endocarditis. According to an overview of the literature and our experience, we suggest that third-generation cephalosporins, piperacillin/tazobactam, and ciprofloxacin are effective in treating invasive B. vesicularis infections, while the efficacy of ampicillin-sulbactam needs further evaluation
A Systematic Study of the Stability, Safety, and Efficacy of the de novo Designed Antimicrobial Peptide PepD2 and Its Modified Derivatives Against Acinetobacter baumannii
Searching for new antimicrobials is a pressing issue to conquer the emergence of multidrug-resistant (MDR) bacteria and fungi. Antimicrobial peptides (AMPs) usually have antimicrobial mechanisms different from those of traditional antibiotics and bring new hope in the discovery of new antimicrobials. In addition to antimicrobial activity, stability and target selectivity are important concerns to decide whether an antimicrobial peptide can be applied in vivo. Here, we used a simple de novo designed peptide, pepD2, which contains only three kinds of amino acid residues (W, K, L), as an example to evaluate how the residues and modifications affect the antimicrobial activity against Acinetobacter baumannii, stability in plasma, and toxicity to human HEK293 cells. We found that pepI2 with a Leu→Ile substitution can decrease the minimum bactericidal concentrations (MBC) against A. baumannii by one half (4 μg/mL). A D-form peptide, pepdD2, in which the D-enantiomers replaced the L-enantiomers of the Lys(K) and Leu(L) residues, extended the peptide half-life in plasma by more than 12-fold. PepD3 is 3-residue shorter than pepD2. Decreasing peptide length did not affect antimicrobial activity but increased the IC50 to HEK293 cells, thus increased the selectivity index (SI) between A. baumannii and HEK293 cells from 4.7 to 8.5. The chain length increase of the N-terminal acyl group and the Lys→Arg substitution greatly enhanced the hemolytic activity, hence those modifications are not good for clinical application. Unlike colistin, the action mechanism of our peptides relies on negatively charged lipids rather than lipopolysaccharides. Therefore, not only gram-negative bacteria but also gram-positive bacteria can be killed by our peptides
Socio-demographic and health-related factors associated with cognitive impairment in the elderly in Taiwan
<p>Abstract</p> <p>Background</p> <p>Cognitive impairment is an age-related condition as the rate of cognitive decline rapidly increases with aging. It is especially important to better understand factors involving in cognitive decline for the countries where the older population is growing rapidly. The aim of this study was to examine the association between socio-demographic and health-related factors and cognitive impairment in the elderly in Taiwan.</p> <p>Methods</p> <p>We analysed data from 2119 persons aged 65 years and over who participated in the 2005 National Health Interview Survey. Cognitive impairment was defined as having the score of the Mini Mental State Examination lower than 24. The χ<sup>2 </sup>test and multiple logistic regression models were used to evaluate the association between cognitive impairment and variables of socio-demography, chronic diseases, geriatric conditions, lifestyle, and dietary factors.</p> <p>Results</p> <p>The prevalence of cognitive impairment was 22.2%. Results of multivariate analysis indicated that low education, being single, low social support, lower lipid level, history of stroke, physical inactivity, non-coffee drinking and poor physical function were associated with a higher risk of cognitive impairment.</p> <p>Conclusion</p> <p>Most of the characteristics in relation to cognitive impairment identified in our analysis are potentially modifiable. These results suggest that improving lifestyle behaviours such as regular exercise and increased social participation could help prevent or decrease the risk of cognitive impairment. Further investigations using longitudinal data are needed to clarify our findings.</p
- …