290 research outputs found

    Pre-hypoxia exposure inhibited copper toxicity by improving energy metabolism, antioxidant defence and mitophagy in the liver of the large yellow croaker Larimichthys crocea.

    Get PDF
    This study investigated the effects of moderate hypoxia pre-exposure on energy metabolism, antioxidant defence and mitophagy in the liver of the large yellow croaker Larimichthys crocea exposed to Cu. Fish were pre-exposed to either normoxia or hypoxia (~3.0 mg L-1, 42% O2 saturation) for 48 h, and subsequently were subjected to either control (without Cu addition) or Cu (168 μg L-1) under normoxic conditions for another 48 h. Copper exposure under normoxia induced Cu toxicity that increased mortality, the production of reactive oxygen species (ROS) and malondialdehyde, and aberrant hepatic mitochondrial ultrastructure. Interestingly, hypoxia pre-exposure improved energy metabolism, antioxidant ability and mitophagy response, and reduced the Cu content to inhibit Cu toxicity, reflecting the enhanced survival rate and reduced oxidative damage. In these processes, hypoxia-inducible factor-1α (HIF-1α), transcription factors NFE2-related nuclear factor 2 (Nrf2), and forkhead box O-3 (FoxO3) mRNA levels were correlated with expression of genes related to energy metabolism, antioxidant defence and mitophagy, respectively, indicating HIF-1α, Nrf2, and FoxO3 are required for the induction of their respective target genes. Overall, moderate hypoxia pre-exposure was able to generate adaptive responses to mitigate Cu-induced toxicological effects, underlining a central role of hormesis

    Pre-hypoxia exposure inhibited copper toxicity by improving energy metabolism, antioxidant defence and mitophagy in the liver of the large yellow croaker Larimichthys crocea

    Get PDF
    Abstract(#br)This study investigated the effects of moderate hypoxia pre-exposure on energy metabolism, antioxidant defence and mitophagy in the liver of the large yellow croaker Larimichthys crocea exposed to Cu. Fish were pre-exposed to either normoxia or hypoxia (~3.0 mg L −1 , 42% O 2 saturation) for 48 h, and subsequently were subjected to either control (without Cu addition) or Cu (168 μg L −1 ) under normoxic conditions for another 48 h. Copper exposure under normoxia induced Cu toxicity that increased mortality, the production of reactive oxygen species (ROS) and malondialdehyde, and aberrant hepatic mitochondrial ultrastructure. Interestingly, hypoxia pre-exposure improved energy metabolism, antioxidant ability and mitophagy response, and reduced the Cu content to inhibit Cu toxicity, reflecting the enhanced survival rate and reduced oxidative damage. In these processes, hypoxia-inducible factor-1α ( HIF-1α ), transcription factors NFE2-related nuclear factor 2 ( Nrf2 ), and forkhead box O-3 ( FoxO3 ) mRNA levels were correlated with expression of genes related to energy metabolism, antioxidant defence and mitophagy, respectively, indicating HIF-1α , Nrf2 , and FoxO3 are required for the induction of their respective target genes. Overall, moderate hypoxia pre-exposure was able to generate adaptive responses to mitigate Cu-induced toxicological effects, underlining a central role of hormesis

    Responses of greenhouse-gas emissions to land-use change from rice to jasmine production in subtropical China

    Get PDF
    We studied the impacts of an increasingly common change in land use from paddy field to jasmine fields on the emission of greenhouse gases (GHGs), which have supposed the transformation of more than 1200 ha only in the last decade in the surroundings of Fuzhou city in response to economic changes. The possible increases that this can suppose constitutes and environmental concern in China. We studied areas dedicated to rice crop that have been partially converted to jasmine cultivation with some parts still kept as rice fields. Emissions of CO2, CH4 and N2O varied significantly among the seasons. CO2 and CH4 cumulative emissions and the global-warming potential (GWP) of these emissions were significantly lower in the jasmine than the paddy field. N2O emission, N2O cumulative emission, however, were higher in the jasmine than the paddy field, despite in some concrete studied periods the differences were not statistically significant. The total decrease in GHG emissions from the conversion from rice to jasmine production was strongly influenced by the indirect effects of various changes in soil conditions. The expected changes due to the great differences in water and fertilization use and management and organic matter input to soil between these two crops were in great part due to modified soil traits. According to structural equation models, the strong direct effects of the change from rice to Jasmine crop reducing the emissions of CO2 and N2O were partially decreased by the indirect effects of crop type change decreasing soil pH and soil [Fe2+] for CO2 emissions and by decreasing soil salinity and soil [Fe3+] for N2O emissions. The negative effects of the crop conversion on CH4 emissions were mostly due to the globally negative indirect effects on soil conditions, by decreases in soil salinity, water content and [Fe2+]. Soil salinity, water content, pH, [Fe2+], [Fe3+] and [total Fe] were significantly lower in the jasmine than the paddy field, but temperature had the opposite pattern. CO2 emissions were generally correlated positively with salinity, temperature, and water content and negatively with [Fe3+] and [total Fe] in both fields. CH4 emissions were positively correlated with salinity, temperature, water content and pH in both fields. N2O emissions were positively correlated with temperature and were negatively correlated with water content, pH, [Fe2+], [Fe3+] and [total Fe] in both fields. CO2 was the most important GHG for the GWPs, and the total GWP was significantly lower for the jasmine than for the rice cropland field. The change in the land use in this area of paddy fields will decreased the global GHG emission, and the effect on the GWPs was mostly due to changes in soil properties

    The UDP-glucosyltransferase multigene family in Bombyx mori

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glucosidation plays a major role in the inactivation and excretion of a great variety of both endogenous and exogenous compounds. A class of UDP-glycosyltransferases (UGTs) is involved in this process. Insect UGTs play important roles in several processes, including detoxication of substrates such as plant allelochemicals, cuticle formation, pigmentation, and olfaction. Identification and characterization of <it>Bombyx mori </it>UGT genes could provide valuable basic information for this important family and explain the detoxication mechanism and other processes in insects.</p> <p>Results</p> <p>Taking advantage of the newly assembled genome sequence, we performed a genome-wide analysis of the candidate UGT family in the silkworm, <it>B. mori</it>. Based on UGT signature and their similarity to UGT homologs from other organisms, we identified 42 putative silkworm UGT genes. Most of them are clustered on the silkworm chromosomes, with two major clusters on chromosomes 7 and 28, respectively. The phylogenetic analysis of these identified 42 UGT protein sequences revealed five major groups. A comparison of the silkworm UGTs with homologs from other sequenced insect genomes indicated that some UGTs are silkworm-specific genes. The expression patterns of these candidate genes were investigated with known expressed sequence tags (ESTs), microarray data, and RT-PCR method. In total, 36 genes were expressed in tissues examined and showed different patterns of expression profile, indicating that these UGT genes might have different functions.</p> <p>Conclusion</p> <p><it>B. mori </it>possesses a largest insect UGT gene family characterized to date, including 42 genes. Phylogenetic analysis, genomic organization and expression profiles provide an overview for the silkworm UGTs and facilitate their functional studies in future.</p

    Cu pre-exposure alters antioxidant defense and energy metabolism in large yellow croaker Larimichthys crocea in response to severe hypoxia

    Get PDF
    Abstract(#br)The aim of the present study was to evaluate the effects of Cu pre-exposure on antioxidant defense and energy metabolism in the liver of the large yellow croaker exposed to severe hypoxia. Fish were pre-acclimated to 0 and 30 μg Cu L −1 for 96 h, and subsequently exposed to 7.0 and 1.5 mg DO L −1 for another 24 h. Hypoxic stress alone increased reactive oxygen species and hepatic vacuoles. When compared to hypoxic stress alone, hypoxic stress plus Cu pre-exposure increased mortality and ROS production, and worsened histological structure by inhibiting antioxidant defense and aerobic metabolism, and enhancing anaerobic metabolism, suggesting Cu pre-acclimation aggravated hypoxia-induced oxidative damage. NFE2-related nuclear factor 2 and hypoxia-inducible factor-1α might participate in the transcriptional regulation of genes related to antioxidant response and energy metabolism, respectively. In conclusion, Cu pre-acclimation had a synergistic effect on antioxidant response and energy metabolism in fish under severe hypoxia, which contributes to understanding the molecular mechanisms underlying negative effects of Cu pre-acclimation against hypoxic damage in fish

    Antigout Effects of Plantago asiatica

    Get PDF
    The XOD inhibitory effects of Plantaginis Semen, that is, the seeds of P. asiatisca, and its representative four single compounds, acteoside, 1H-indolo-3-carbaldehyde, isoacteoside, and myristic acid, were evaluated by electron transfer signal blocking activities (ETSBA), which is based on the electron transfer signal of XOD enzymatic reaction. The blocking activities were detected using an electrochemical biosensing method. Compared with control, significant effects were observed after the addition of P. asiatica extract, acteoside, and 1H-indolo-3-carbaldehyde (all p<0.05). The IC50 values of the extract and acteoside are 89.14 and 7.55 μg·mL−1, respectively. The IC20 values of the extract, acteoside, and 1H-indolo-3-carbaldehyde are 24.28, 3.88, and 16.16 μg·mL−1, respectively. Due to the relatively lower inhibitory potential of 1H-indolo-3-carbaldehyde, its IC50 was not obtained. In addition, isoacteoside and myristic acid did not show any XOD inhibitory effects. Our data demonstrated that the XOD inhibitory effects of the extract, acteoside, and 1H-indolo-3-carbaldehyde can be accurately evaluated by the ETSBA method. The results from this study indicated that Plantaginis Semen significantly inhibited XOD activities to reduce hyperuricemia and treat gout. The study also proves that measuring the electron transfer signal blocking activities is a simple, sensitive, and accurate method to evaluate the XOD inhibitory effects

    Influence of Exposure to Imidacloprid on Survivorship, Reproduction and Vitellin Content of the Carmine Spider Mite, Tetranychus cinnabarinus

    Get PDF
    Occasional reports linking neonicotinoid insecticide applications to field population outbreaks of the spider mite have been a topic of concern for integrated pest management programs. To elucidate the impacts of a neonicotinoid insecticide on the carmine spider mite, Tetranychus cinnabarinus Boisduval (Acari: Tetranychidae), the survivorship, reproduction, and vitellin contents of the mite were investigated after exposure to various concentrations of imidacloprid on the V. unguiculata leaf discs at 25°C, 80% RH and a photoperiod of 14:10 (L:D) in the laboratory. The results showed that the field-relevant dose of imidacloprid did not significantly affect the hatch rate of eggs or pre-imaginal survivorship of the mite, while sublethal doses of imidacloprid, previously determined for Myzus persicae, led to a significant increase in the hatch rate of eggs and pre-imaginal survivorship of the mite compared to the untreated control. Adult longevity and fecundity of T. cinnabarinus for imidacloprid-treated populations were slightly prolonged and increased, respectively, but the difference from the untreated control was not significant. The vitellin content in eggs increased significantly after exposure to imidacloprid. Imidacloprid may be one of the major reasons for the outbreak of T. cinnabarinus in the field
    corecore