351 research outputs found

    Graphene-based spintronic components

    Full text link
    A major challenge of spintronics is in generating, controlling and detecting spin-polarized current. Manipulation of spin-polarized current, in particular, is difficult. We demonstrate here, based on calculated transport properties of graphene nanoribbons, that nearly +-100% spin-polarized current can be generated in zigzag graphene nanoribbons (ZGNRs) and tuned by a source-drain voltage in the bipolar spin diode, in addition to magnetic configurations of the electrodes. This unusual transport property is attributed to the intrinsic transmission selection rule of the spin subbands near the Fermi level in ZGNRs. The simultaneous control of spin current by the bias voltage and the magnetic configurations of the electrodes provides an opportunity to implement a whole range of spintronics devices. We propose theoretical designs for a complete set of basic spintronic devices, including bipolar spin diode, transistor and logic gates, based on ZGNRs.Comment: 14 pages, 4 figure

    The p53 Pathway Controls SOX2-Mediated Reprogramming in the Adult Mouse Spinal Cord

    Get PDF
    Although the adult mammalian spinal cord lacks intrinsic neurogenic capacity, glial cells can be reprogrammed in vivo to generate neurons after spinal cord injury (SCI). How this reprogramming process is molecularly regulated, however, is not clear. Through a series of in vivo screens, we show here that the p53-dependent pathway constitutes a critical checkpoint for SOX2-mediated reprogramming of resident glial cells in the adult mouse spinal cord. While it has no effect on the reprogramming efficiency, the p53 pathway promotes cell-cycle exit of SOX2-induced adult neuroblasts (iANBs). As such, silencing of either p53 or p21 markedly boosts the overall production of iANBs. A neurotrophic milieu supported by BDNF and NOG can robustly enhance maturation of these iANBs into diverse but predominantly glutamatergic neurons. Together, these findings have uncovered critical molecular and cellular checkpoints that may be manipulated to boost neuron regeneration after SCI

    Enhanced sensing of optomechanically induced nonlinearity by linewidth suppression and optical bistability in cavity-waveguide systems

    Full text link
    We study enhanced sensing of optomechanically induced nonlinearity (OMIN) in a cavity-waveguide coupled system. The Hamiltonian of the system is anti-PT symmetric with the two involved cavities being dissipatively coupled via the waveguide. When a weak waveguide-mediated coherent coupling is introduced, the anti-PT symmetry may break down. However, we find a strong bistable response of the cavity intensity to the OMIN near the cavity resonance, benefiting from linewidth suppression caused by the vacuum induced coherence. The joint effect of optical bistability and the linewidth suppression is inaccessible by the anti-PT symmetric system involving only dissipative coupling. Due to that, the sensitivity is greatly enhanced by two orders of magnitude compared to that for the anti-PT symmetric model. Moreover, the sensitivity shows resistances to a reasonably large cavity decay and robustness to fluctuations in the cavity-waveguide detuning. Based on the integrated optomechanical cavity-waveguide systems, the scheme can be used for sensing different physical quantities related to the single-photon coupling strength, and has potential applications in high-precision measurements with physical systems involving Kerr-type nonlinearity.Comment: 9 pages, 5 figure

    Dichlorido(2,9-dimeth­oxy-1,10-phenanthroline-κ2 N,N′)zinc(II)

    Get PDF
    In the crystal structure of the title compound, [ZnCl2(C14H12N2O2)], the ZnII center is four-coordinated by two N atoms from one 2,9-dimeth­oxy-1,10-phenanthroline ligand and two Cl atoms. The coordination geometry is distorted tetra­hedral, as the Zn—N bond distances are shorter than the Zn—Cl distances, and the Cl—Zn—N and Cl—Zn—Cl bond angles are much larger than the N—Zn—N angle. For the ligand, the O and C atoms of the meth­oxy groups are almost in the plane defined by the phenanthroline ring. The two O atoms deviate from the phenanthroline mean plane by 0.076 (2) and 0.084 (2) Å, and the two methyl C atoms deviate from the phenanthroline mean plane by 0.035 (3) and 0.361 (3) Å. There are medium π–π stacking interactions between two parallel phenanthroline rings with a centroid–centroid distance of 3.7860 (2) Å and a dihedral angle between the plane defined by the two parallel phenanthroline rings of 1.13 (5)°

    THE INFLUENCE OF ADJUSTABLE PUTTER HEAD WEIGHTING ON THE STROKE

    Get PDF
    The purpose of this study was to investigate the effects of putter head weighting towards the heel and the toe on the kinematic aspects of the putting stroke. Seven (n=7) male golfers (age 42.6 ±2.3 y) with high proficiency (handicap 9.5 ±1.4) were recruited for this study. The experiment was carried out in an indoor studio with artificial grass (Stimp 10). Two toe weight and two heel weight settings were tested and compared with the standard weighting. Results suggest that putter head weighing influences the characteristics of the putting stroke, and systematic differences were found between toe and heel weighting. It is concluded that fitting the weight and the balance of a putter head is critical for supporting each individual's stroke and putting performance

    Clemastine Alleviates Depressive-Like Behavior Through Reversing the Imbalance of Microglia-Related Pro-inflammatory State in Mouse Hippocampus

    Get PDF
    Backgrounds: Abundant reports indicate that neuroinflammatory signaling contributes to behavioral complications associated with depression and may be related to treatment response. The glial cells, especially microglia and astrocytes in brain regions of hippocampus and medial prefrontal cortex (mPFC), are major components of CNS innate immunity. Moreover, purinergic receptor P2X, ligand-gated ion channel 7 (P2X7R) was recently reckoned as a pivotal regulator in central immune system. Besides, it was pointed out that clemastine, a first-generation histamine receptor H1 (HRH1) antagonist with considerable safety profile and pharmacological effect, may suppress immune activation through modulating P2X7R. Herein, we investigated the potential anti-neuroinflammatory effects of clemastine on chronic unpredictable mild stress (CUMS)-induced depressive-like behavior in a mouse model.Methods: Male BALB/c mice were subjected to CUMS for 4 weeks, some of them were injected with clemastine fumarate solution. After the stress procedure, behavioral tests including Sucrose Preference Tests (SPTs), Tail Suspension Tests (TSTs) and locomotor activities were performed to evaluate depressive-like phenotype. Subsequently, expression of cytokines and microglia-related inflammatory biomarkers were assessed.Results: In the present research, we found that clemastine significantly reversed both the declination of SPT percentage and the extension of TST immobility durations in depression mouse model without affecting locomotor activity. Also, we observed that clemastine regulated the imbalance of pro-inflammatory cytokines including interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) in the hippocampus and serum of depressive-like mice. Additionally, clemastine significantly suppressed microglial M1-like activation specifically in the hippocampus, and also improved hippocampal astrocytic loss. Furthermore, clemastine downregulated hippocampal P2X7R without interfering with the expression of HRH1.Conclusion: As a safe and efficient anti-allergic agent, clemastine could impressively alleviate stress-related depressive-like phenotype in mice. Further evidence supported that it was because of the potential function of clemastine in modulating the expression of P2X7 receptor possibly independent of HRH1, therefore suppressing the microglial M1-like activation and pro-inflammatory cytokines release in brain regions of hippocampus rather than mPFC

    Assessment of the Impact of Spatial Heterogeneity on Microwave Satellite Soil Moisture Periodic Error

    Get PDF
    An accurate temporal and spatial characterization of errors is required for the efficient processing, evaluation, and assimilation of remotely-sensed surface soil moisture retrievals. However, empirical evidence exists that passive microwave soil moisture retrievals are prone to periodic artifacts which may complicate their application in data assimilation systems (which commonly treat observational errors as being temporally white). In this paper, the link between such temporally-periodic errors and spatial land surface heterogeneity is examined. Both the synthetic experiment and site-specified cases reveal that, when combined with strong spatial heterogeneity, temporal periodicity in satellite sampling patterns (associated with exact repeat intervals of the polar-orbiting satellites) can lead to spurious high frequency spectral peaks in soil moisture retrievals. In addition, the global distribution of the most prominent and consistent 8-day spectral peak in the Advanced Microwave Scanning Radiometer - Earth Observing System soil moisture retrievals is revealed via a peak detection method. Three spatial heterogeneity indicators - based on microwave brightness temperature, land cover types, and long-term averaged vegetation index - are proposed to characterize the degree to which the variability of land surface is capable of inducing periodic error into satellite-based soil moisture retrievals. Regions demonstrating 8-day periodic errors are generally consistent with those exhibiting relatively higher heterogeneity indicators. This implies a causal relationship between spatial land surface heterogeneity and temporal periodic error in remotely-sensed surface soil moisture retrievals

    A predator-prey interaction between a marine Pseudoalteromonas sp. and Gram-positive bacteria

    Get PDF
    Predator-prey interactions play important roles in the cycling of marine organic matter. Here we show that a Gram-negative bacterium isolated from marine sediments (Pseudoalteromonas sp. strain CF6-2) can kill Gram-positive bacteria of diverse peptidoglycan (PG) chemotypes by secreting the metalloprotease pseudoalterin. Secretion of the enzyme requires a Type II secretion system. Pseudoalterin binds to the glycan strands of Gram positive bacterial PG and degrades the PG peptide chains, leading to cell death. The released nutrients, including PG-derived D-amino acids, can then be utilized by strain CF6-2 for growth. Pseudoalterin synthesis is induced by PG degradation products such as glycine and glycine-rich oligopeptides. Genes encoding putative pseudoalterin-like proteins are found in many other marine bacteria. This study reveals a new microbial interaction in the ocean

    Simple Security Proof of Mode-Pairing Quantum Key Distribution

    Full text link
    Mode-pairing (MP) quantum key distribution (QKD) eliminates the requirements of phase locking and phase tracking compared with twin-field (TF) QKD while still surpassing the fundamental rate-distance limit of QKD. The complexity of the experimental implementation is reduced while the efficiency is also guaranteed. The security of MP-QKD is proved rigorously by examining the consistency of the states detailly between MP-QKD and the fixed-pairing scheme under all of Eve's possible interference, where the latter is equivalent to measurement-device-independent (MDI) QKD. Here we propose a simple and straightforward method to prove the information-theoretic security of MP-QKD. Specifically, an entanglement scheme for MP-QKD is proposed and its security is proved using entanglement purification. Then the security of MP-QKD can be guaranteed with the equivalence of the entanglement scheme and prepare-and-measure scheme for MP-QKD. With this approach, it is beneficial to analyze and understand the performance and security of MP-QKD. We explain why the pairing rounds in MP-QKD can be decoupled and determined by the measurement results announced by a third party, which is the key difference between MP-QKD and MDI-QKD. Moreover, we analyze the security of MP-QKD with the allowed optimal pairing strategy, which is significant for the secret key rate, under collective and coherent attacks

    Dichloroacetate blocks aerobic glycolytic adaptation to attenuated measles virus and promotes viral replication leading to enhanced oncolysis in glioblastoma

    Get PDF
    Targeting reprogrammed energy metabolism such as aerobic glycolysis is a potential strategy for cancer treatment. However, tumors exhibiting low-rate glycolysis or metabolic heterogeneity might be resistant to such treatment. We hypothesized that a therapeutic modality that drove cancer cells to high-rate glycolysis might sensitize cancer cells to interference directed against metabolic flux. In this study, we found that attenuated oncolytic measles virus Edmonston strain (MV-Edm) caused glioblastoma cells to shift to high-rate aerobic glycolysis; this adaptation was blocked by dichloroacetate (DCA), an inhibitor of glycolysis, leading to profound cell death of cancer cells but not of normal cells. DCA enhanced viral replication by mitigating mitochondrial antiviral signaling protein (MAVS)-mediated innate immune responses. In a subcutaneous glioblastoma (GBM) xenograft mouse model, low-dose MV-Edm and DCA significantly inhibited tumor growth in vivo. We found that DCA impaired glycolysis (blocking bioenergetic generation) and enhanced viral replication (increasing bioenergetic consumption), which, in combination, accelerated bioenergetic exhaustion leading to necrotic cell death. Taken together, oncolytic MV-Edm sensitized cancer cells to DCA, and in parallel, DCA promoted viral replication, thus, improving oncolysis. This novel therapeutic approach should be readily incorporated into clinical trials
    corecore