76 research outputs found

    Clinical pharmacokinetics of norfloxacin-glycine acetate after intravenous and oral administration in pigs

    Get PDF
    The pharmacokinetics and dosage regimen of norfloxacin-glycine acetate (NFLXGA) was investigated in pigs after a single intravenous (i.v.) or oral (p.o.) administration at a dosage of 7.2 mg/kg body weight. After both i.v. and p.o. administration, plasma drug concentrations were best fitted to an open two-compartment model with a rapid distribution phase. After i.v. administration of NFLXGA, the distribution (t1/2α) and elimination half-life (t1/2β) were 0.36 ± 0.07 h and 7.42 ± 3.55 h, respectively. The volume of distribution of NFLXGA at steady state (Vdss) was 4.66 ± 1.39 l/kg. After p.o. administration of NFLXGA, the maximal absorption concentration (Cmax) was 0.43 ± 0.06 µg/ml at 1.36 ± 0.39 h (Tmax). The mean absorption (t1/2ka) and elimination half-life (t1/2β) of NFLXGA were 0.78 ± 0.27 h and 7.13 ± 1.41 h, respectively. The mean systemic bioavailability (F) after p.o. administration was 31.10 ± 15.16%. We suggest that the optimal dosage calculated from the pharmacokinetic parameters is 5.01 mg/kg per day i.v. or 16.12 mg/kg per day p.o

    Cytomegalovirus Ventriculoencephalitis after Unrelated Double Cord Blood Stem Cell Transplantation with an Alemtuzumab-containing Preparative Regimen for Philadelphia-positive Acute Lymphoblastic Leukemia

    Get PDF
    Despite the prophylaxis and preemptive strategies using potent antiviral agents, cytomegalovirus (CMV) remains a major infectious cause of morbidity and mortality in allogeneic stem cell transplantation (SCT) recipients. Delayed immune reconstitution after SCT, such as cord blood and T-cell depleted SCT with the use of alemtuzumab, has been associated with an increased frequency of CMV disease as well as CMV reactivation. CMV disease involving central nervous system is an unusual presentation in the setting of SCT. We report a case of CMV ventriculoencephalitis after unrelated double cord blood SCT with an alemtuzumab-containing preparative regimen for Philadelphia-positive acute lymphoblastic leukemia

    Current Trends of Infectious Complications following Hematopoietic Stem Cell Transplantation in a Single Center

    Get PDF
    This study was to analyze the infectious complications after hematopoietic stem cell transplantation (HSCT) according to the recent changes of HSCT. Medical records of 379 adult patients who underwent HSCT consecutively at Catholic HSCT Center from January 2001 to December 2002 were reviewed retrospectively. Allogeneic HSCT accounted for 75.7% (287/379) and autologous HSCT for 24.3% (92/379). During pre-engraftment period, bacterial infection was predominant, and E. coli was still the most common organism. After engraftment, viral infection was predominant. The incidence of invasive fungal infection showed bimodal distribution with peak correlated with neutropenia and graft-versus-host disease (GVHD). The overall mortality and infection-related mortality rates according to 3 periods were as follows; during pre-engraftment, 3.16% (12/379) and 1.8% (7/379); during midrecovery period, 7.9% (29/367) and 4.1% (15/367); during late-recovery period, 26.9% (91/338), and 15.9% (54/338). Risk factors for infection-related mortality were as follows; during pre-engraftment period, fungal infection and septic shock; during the mid-recovery period, hemorrhagic cystitis and delayed engraftment; during the late-recovery period, fungal infection, chronic GVHD, and relapse. In conclusion, infection was still one of the main complications after HSCT and highly contributes to mortality. The early diagnosis and the effective vaccination strategy are needed for control of infections

    Comparison of Quantitative Cytomegalovirus Real-time PCR in Whole Blood and pp65 Antigenemia Assay: Clinical Utility of CMV Real-time PCR in Hematopoietic Stem Cell Transplant Recipients

    Get PDF
    Successful preemptive therapy for cytomegalovirus (CMV) infection in transplant patients depends on the availability of sensitive, specific, and timely diagnostic tests for CMV infection. Although the pp65 antigenemia assay has been widely used for this purpose, real-time quantification of CMV DNA has recently been recognized as an alternative diagnostic approach. However, the guidelines for antiviral therapy based on real-time quantitative polymerase chain reaction (RQ-PCR) have yet to be established. From November 2004 to March 2005, a total of 555 whole blood samples from 131 hematopoietic stem cell transplant (HSCT) recipients were prospectively collected. RQ-PCR was conducted using an Artus® CMV LC PCR kit (QIAGEN). Both qualitative and quantitative correlations were drawn between the two methods. Exposure to the antiviral agent influenced the results of the two assays. Additionally, the discrepancy was observed at low levels of antigenemia and CMV DNA load. Via ROC curve analysis, the tentative cutoff value for preemptive therapy was determined to be approximately 2×104 copies/mL (sensitivity, 80.0%; specificity, 50.0%) in the high risk patients, and approximately 3×104 copies/mL (sensitivity, 90.0%; specificity, 70.0%) in the patients at low risk for CMV disease. Further study to validate the optimal cutoff value for the initiation of preemptive therapy is currently underway

    Clinical Characteristics and Outcomes of Posttransplant Lymphoproliferative Disorders Following Allogeneic Hematopoietic Stem Cell Transplantation in Korea

    Get PDF
    Between 1995 and 2003, seven cases of posttransplant lymphoproliferative disorder (PTLD) were identified among 1,116 patients who received allogeneic hematopoietic stem cell transplantations (HSCT) at Catholic HSCT Center (overall incidence 0.6%). Five (71.4%) patients had episodes of acute graft-versus-host-disease (GVHD) and were treated with steroids. Cervical lymphadenopathy was observed in most cases (71.4%), but clinical symptoms varied depending on the involved sites. Pathologic findings varied: 1 case of plasmacytic hyperplasia, 3 of polymorphic PTLD, 2 of diffuse large B-cell lymphoma, 1 of large T-cell lymphoma, which proved to be associated with Epstein-Barr virus (EBV). The proportion of EBV-negative PTLD was 33.3%. Five patients demonstrated a good response to treatment (treatment response rate 71.4%). The overall mortality was 42.8%, and one death was directly attributable to PTLD. The incidence of PTLD is expected to increase, based on the rising use of grafts from alternative donors and recent clinical features of PTLD manifested by a disseminated and fulminant nature. It is necessary to have a high level of suspicion when monitoring patients and readily adopt prompt and effective cellular immunotherapy for PTLD

    The Cytosolic Protein G0S2 Maintains Quiescence in Hematopoietic Stem Cells

    Get PDF
    Bone marrow hematopoietic stem cells (HSCs) balance proliferation and differentiation by integrating complex transcriptional and post-translational mechanisms regulated by cell intrinsic and extrinsic factors. We found that transcripts of G0/G1 switch gene 2 (G0S2) are enriched in lineage− Sca-1+ c-kit+ (LSK) CD150+ CD48− CD41− cells, a population highly enriched for quiescent HSCs, whereas G0S2 expression is suppressed in dividing LSK CD150+ CD48− cells. Gain-of-function analyses using retroviral expression vectors in bone marrow cells showed that G0S2 localizes to the mitochondria, endoplasmic reticulum, and early endosomes in hematopoietic cells. Co-transplantation of bone marrow cells transduced with the control or G0S2 retrovirus led to increased chimerism of G0S2-overexpressing cells in femurs, although their contribution to the blood was reduced. This finding was correlated with increased quiescence in G0S2-overexpressing HSCs (LSK CD150+ CD48−) and progenitor cells (LS−K). Conversely, silencing of endogenous G0S2 expression in bone marrow cells increased blood chimerism upon transplantation and promoted HSC cell division, supporting an inhibitory role for G0S2 in HSC proliferation. A proteomic study revealed that the hydrophobic domain of G0S2 interacts with a domain of nucleolin that is rich in arginine-glycine-glycine repeats, which results in the retention of nucleolin in the cytosol. We showed that this cytosolic retention of nucleolin occurs in resting, but not proliferating, wild-type LSK CD150+ CD48− cells. Collectively, we propose a novel model of HSC quiescence in which elevated G0S2 expression can sequester nucleolin in the cytosol, precluding its pro-proliferation functions in the nucleolus

    DYRK2 controls a key regulatory network in chronic myeloid leukemia stem cells

    No full text
    Leukemia: Wiping out hidden reservoirs of stem cells A master regulator protein may represent a key vulnerability for the eradication of stem cell populations that drive recurrence in chronic myeloid leukemia (CML). These leukemia stem cells (LSCs) remain robust and proliferative even after treatment has wiped out other reservoirs of cancer. Chun Shik Park and Daniel Lacorazza at Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA, have reviewed current knowledge about the molecular mechanisms that promote LSC survival, focusing on a protein called DYRK2. This protein’s normal physiological function is poorly understood, but it appears to restrain the uncontrolled proliferation of LSCs. Reduced expression of DYRK2 in these cells may play a major role in unleashing their tumorigenic potential. Agents that transiently reactivate DYRK2 could therefore prove a valuable adjunct to therapy, by promoting the deterioration and death of these cancer stem cells

    Concurrent working memory load can facilitate selective attention: Evidence for specialized load.

    No full text
    Load theory predicts that concurrent working memory load impairs selective attention and increases distractor interference (N. Lavie, A. Hirst, J. W. de Fockert, & E. Viding, 2004). Here, the authors present new evidence that the type of concurrent working memory load determines whether load impairs selective attention or not. Working memory load was paired with a same/different matching task that required focusing on targets while ignoring distractors. When working memory items shared the same limited-capacity processing mechanisms with targets in the matching task, distractor interference in-creased. However, when working memory items shared processing with distractors in the matching task, distractor interference decreased, facilitating target selection. A specialized load account is proposed to describe the dissociable effects of working memory load on selective processing depending on whether the load overlaps with targets or with distractors

    Sulforaphane induces cell cycle arrest and apoptosis in acute lymphoblastic leukemia cells.

    Get PDF
    Acute lymphoblastic leukemia (ALL) is the most common hematological cancer in children. Although risk-adaptive therapy, CNS-directed chemotherapy, and supportive care have improved the survival of ALL patients, disease relapse is still the leading cause of cancer-related death in children. Therefore, new drugs are needed as frontline treatments in high-risk disease and as salvage agents in relapsed ALL. In this study, we report that purified sulforaphane, a natural isothiocyanate found in cruciferous vegetables, has anti-leukemic properties in a broad range of ALL cell lines and primary lymphoblasts from pediatric T-ALL and pre-B ALL patients. The treatment of ALL leukemic cells with sulforaphane resulted in dose-dependent apoptosis and G2/M cell cycle arrest, which was associated with the activation of caspases (3, 8, and 9), inactivation of PARP, p53-independent upregulation of p21(CIP1/WAF1), and inhibition of the Cdc2/Cyclin B1 complex. Interestingly, sulforaphane also inhibited the AKT and mTOR survival pathways in most of the tested cell lines by lowering the levels of both total and phosphorylated proteins. Finally, the administration of sulforaphane to the ALL xenograft models resulted in a reduction of tumor burden, particularly following oral administration, suggesting a potential role as an adjunctive agent to improve the therapeutic response in high-risk ALL patients with activated AKT signaling
    • …
    corecore