10,882 research outputs found

    Displaced Higgs production in type III seesaw

    Full text link
    We point out that the type III seesaw mechanism introducing fermion triplets predicts peculiar Higgs boson signatures of displaced vertices with two b jets and one or two charged particles which can be cleanly identified. In a supersymmetric theory, the scalar partner of the fermion triplet contains a neutral dark matter candidate which is almost degenerate with its charged components. A Higgs boson can be produced together with such a dark matter triplet in the cascade decay chain of a strongly produced squark or gluino. When the next lightest supersymmetric particle (NLSP) is bino/wino-like, there appears a Higgs boson associated with two charged tracks of a charged lepton and a heavy charged scalar at a displacement larger than about 1 mm. The corresponding production cross-section is about 0.5 fb for the squark/gluino mass of 1 TeV. In the case of the stau NLSP, it decays mainly to a Higgs boson and a heavy charged scalar whose decay length is larger than 0.1 mm for the stau NLSP mixing with the left-handed stau smaller than 0.3. As this process can have a large cascade production ∌2\sim 2 pb for the squark/gluino mass ∌1\sim 1 TeV, one may be able to probe it at the early stage of the LHC experiment.Comment: 10 pages, 5 figure

    Auxiliary field formalism for dilute fermionic atom gases with tunable interactions

    Full text link
    We develop the auxiliary field formalism corresponding to a dilute system of spin-1/2 fermions. This theory represents the Fermi counterpart of the BEC theory developed recently by F. Cooper et al. [Phys. Rev. Lett. 105, 240402 (2010)] to describe a dilute gas of Bose particles. Assuming tunable interactions, this formalism is appropriate for the study of the crossover from the regime of Bardeen-Cooper-Schriffer (BCS) pairing to the regime of Bose-Einstein condensation (BEC) in ultracold fermionic atom gases. We show that when applied to the Fermi case at zero temperature, the leading-order auxiliary field (LOAF) approximation gives the same equations as those obtained in the standard BCS variational picture. At finite temperature, LOAF leads to the theory discussed by by Sa de Melo, Randeria, and Engelbrecht [Phys. Rev. Lett. 71, 3202(1993); Phys. Rev. B 55, 15153(1997)]. As such, LOAF provides a unified framework to study the interacting Fermi gas. The mean-field results discussed here can be systematically improved upon by calculating the one-particle irreducible (1-PI) action corrections, order by order.Comment: 12 pages, 5 figure

    Strain induced half-metal to semiconductor transition in GdN

    Get PDF
    We have investigated the electronic structure and magnetic properties of GdN as a function of unit cell volume. Based on the first-principles calculations of GdN, we observe that there is a transformation in conduction properties associated with the volume increase: first from halfmetallic to semi-metallic, then ultimately to semiconducting. We show that applying stress can alter the carrier concentration as well as mobility of the holes and electrons in the majority spin channel. In addition, we found that the exchange parameters depend strongly on lattice constant, thus the Curie temperature of this system can be enhanced by applying stress or doping impurities.Comment: 9 pages, 3 figure

    On Lattice Computations of K+ --> pi+ pi0 Decay at m_K =2m_pi

    Get PDF
    We use one-loop chiral perturbation theory to compare potential lattice computations of the K+ --> pi+ pi0 decay amplitude at m_K=2m_pi with the experimental value. We find that the combined one-loop effect due to this unphysical pion to kaon mass ratio and typical finite volume effects is still of order minus 20-30%, and appears to dominate the effects from quenching.Comment: 4 pages, revte

    Coercive Field and Magnetization Deficit in Ga(1-x)Mn(x)As Epilayers

    Full text link
    We have studied the field dependence of the magnetization in epilayers of the diluted magnetic semiconductor Ga(1-x)Mn(x)As for 0.0135 < x < 0.083. Measurements of the low temperature magnetization in fields up to 3 T show a significant deficit in the total moment below that expected for full saturation of all the Mn spins. These results suggest that the spin state of the non-ferromagnetic Mn spins is energetically well separated from the ferromagnetism of the bulk of the spins. We have also studied the coercive field (Hc) as a function of temperature and Mn concentration, finding that Hc decreases with increasing Mn concentration as predicted theoretically.Comment: 15 total pages -- 5 text, 1 table, 4 figues. Accepted for publication in MMM 2002 conference proceedings (APL

    Hole effective mass in remote doped Si/Si1−xGex quantum wells with 0.05x0.3

    Get PDF
    The effective masses in remote doped Si/Si1−xGex hole quantum wells with 0.05<=x<=0.3, have been determined from the temperature dependence of the Shubnikov–de Haas oscillations. The values are lower than previously observed by other workers, but still somewhat higher than the theoretical Gamma-point values for the ground-state heavy hole subband. The differences are attributed to finite carrier sheet densities and can be satisfactorily accounted for by nonparabolicity corrections

    Unified theory for Goos-H\"{a}nchen and Imbert-Fedorov effects

    Full text link
    A unified theory is advanced to describe both the lateral Goos-H\"{a}nchen (GH) effect and the transverse Imbert-Fedorov (IF) effect, through representing the vector angular spectrum of a 3-dimensional light beam in terms of a 2-form angular spectrum consisting of its 2 orthogonal polarized components. From this theory, the quantization characteristics of the GH and IF displacements are obtained, and the Artmann formula for the GH displacement is derived. It is found that the eigenstates of the GH displacement are the 2 orthogonal linear polarizations in this 2-form representation, and the eigenstates of the IF displacement are the 2 orthogonal circular polarizations. The theoretical predictions are found to be in agreement with recent experimental results.Comment: 15 pages, 3 figure

    Correlation between 3:2 QPO pairs and Jets in Black Hole X-ray Binaries

    Full text link
    We argue, following our earlier works (the "CEBZMC model"), that the phenomenon of twin peak high frequency quasi-periodic oscillations (QPOs) observed in black hole X-ray binaries is caused by magnetic coupling (MC) between accretion disk and black hole (BH). Due to MC, two bright spots occur at two separate radial locations r_{in} and r_{out} at the disk surface, energized by a kind of the Blandford-Znajek mechanism (BZ). We assume, following the Kluzniak-Abramowicz QPO resonance model, that Keplerian frequencies at these two locations are in the 3:2 ratio. With this assumption, we estimate the BH spins in several sources, including GRO J1655-40, GRS 1915+105, XTE J1550-564, H1743-322 and Sgr A*. We give an interpretation of the "jet line" in the hardness-intensity plane discussing the parameter space consisting of the BH spin and the power-law index for the variation of the large-scale magnetic field in the disk. Furthermore, we propose a new scenario for the spectral state transitions in BH X-ray binaries based on fluctuation in densities of accreting plasma from a companion star.Comment: 17 pages, 6 figures, accepted by AP

    Hole effective mass in remote doped Si/Si1−xGex quantum wells with 0.05x0.3

    Get PDF
    The effective masses in remote doped Si/Si1−xGex hole quantum wells with 0.05<=x<=0.3, have been determined from the temperature dependence of the Shubnikov–de Haas oscillations. The values are lower than previously observed by other workers, but still somewhat higher than the theoretical Gamma-point values for the ground-state heavy hole subband. The differences are attributed to finite carrier sheet densities and can be satisfactorily accounted for by nonparabolicity corrections

    Evidence of ratchet effect in nanowires of a conducting polymer

    Get PDF
    Ratchet effect, observed in many systems starting from living organism to artificially designed device, is a manifestation of motion in asymmetric potential. Here we report results of a conductivity study of Polypyrrole nanowires, which have been prepared by a simple method to generate a variation of doping concentration along the length. This variation gives rise to an asymmetric potential profile that hinders the symmetry of the hopping process of charges and hence the value of measured resistance of these nanowires become sensitive to the direction of current flow. The asymmetry in resistance was found to increase with decreasing nanowire diameter and increasing temperature. The observed phenomena could be explained with the assumption that the spatial extension of localized state involved in hopping process reduces as the doping concentration reduces along the length of the nanowires.Comment: Revtex, two column, 4 pages, 10 figure
    • 

    corecore