45 research outputs found

    Mitosis Detection from Partial Annotation by Dataset Generation via Frame-Order Flipping

    Full text link
    Detection of mitosis events plays an important role in biomedical research. Deep-learning-based mitosis detection methods have achieved outstanding performance with a certain amount of labeled data. However, these methods require annotations for each imaging condition. Collecting labeled data involves time-consuming human labor. In this paper, we propose a mitosis detection method that can be trained with partially annotated sequences. The base idea is to generate a fully labeled dataset from the partial labels and train a mitosis detection model with the generated dataset. First, we generate an image pair not containing mitosis events by frame-order flipping. Then, we paste mitosis events to the image pair by alpha-blending pasting and generate a fully labeled dataset. We demonstrate the performance of our method on four datasets, and we confirm that our method outperforms other comparisons which use partially labeled sequences.Comment: 8 pages, 9figures, MICCAI 2023 accepte

    Overexpression of Nuclear Receptor 5A1 Induces and Maintains an Intermediate State of Conversion between Primed and Naive Pluripotency

    Get PDF
    Naive and primed human pluripotent stem cells (hPSCs) have provided useful insights into the regulation of pluripotency. However, the molecular mechanisms regulating naive conversion remain elusive. Here, we report intermediate naive conversion induced by overexpressing nuclear receptor 5A1 (NR5A1) in hPSCs. The cells displayed some naive features, such as clonogenicity, glycogen synthase kinase 3β, and mitogen-activated protein kinase (MAPK) independence, expression of naive-associated genes, and two activated X chromosomes, but lacked others, such as KLF17 expression, transforming growth factor β independence, and imprinted gene demethylation. Notably, NR5A1 negated MAPK activation by fibroblast growth factor 2, leading to cell-autonomous self-renewal independent of MAPK inhibition. These phenotypes may be associated with naive conversion, and were regulated by a DPPA2/4-dependent pathway that activates the selective expression of naive-associated genes. This study increases our understanding of the mechanisms regulating the conversion from primed to naive pluripotency

    HSP90α plays an important role in piRNA biogenesis and retrotransposon repression in mouse

    Get PDF
    HSP90, found in all kingdoms of life, is a major chaperone protein regulating many client proteins. We demonstrated that HSP90α, one of two paralogs duplicated in vertebrates, plays an important role in the biogenesis of fetal PIWI-interacting RNAs (piRNA), which act against the transposon activities, in mouse male germ cells. The knockout mutation of Hsp90α resulted in a large reduction in the expression of primary and secondary piRNAs and mislocalization of MIWI2, a PIWI homolog. Whereas the mutation in Fkbp6 encoding a co-chaperone reduced piRNAs of 28–32 nucleotides in length, the Hsp90α mutation reduced piRNAs of 24–32 nucleotides, suggesting the presence of both FKBP6-dependent and -independent actions of HSP90α. Although DNA methylation and mRNA levels of L1 retrotransposon were largely unchanged in the Hsp90α mutant testes, the L1-encoded protein was increased, suggesting the presence of post-transcriptional regulation. This study revealed the specialized function of the HSP90α isofom in the piRNA biogenesis and repression of retrotransposons during the development of male germ cells in mammals

    Increased predominance of the matured ventricular subtype in embryonic stem cell-derived cardiomyocytes in vivo

    Get PDF
    Accumulating evidence suggests that human pluripotent stem cell-derived cardiomyocytes can affect “heart regeneration”, replacing injured cardiac scar tissue with concomitant electrical integration. However, electrically coupled graft cardiomyocytes were found to innately induce transient post-transplant ventricular tachycardia in recent large animal model transplantation studies. We hypothesised that these phenomena were derived from alterations in the grafted cardiomyocyte characteristics. In vitro experiments showed that human embryonic stem cell-derived cardiomyocytes (hESC-CMs) contain nodal-like cardiomyocytes that spontaneously contract faster than working-type cardiomyocytes. When transplanted into athymic rat hearts, proliferative capacity was lower for nodal-like than working-type cardiomyocytes with grafted cardiomyocytes eventually comprising only relatively matured ventricular cardiomyocytes. RNA-sequencing of engrafted hESC-CMs confirmed the increased expression of matured ventricular cardiomyocyte-related genes, and simultaneous decreased expression of nodal cardiomyocyte-related genes. Temporal engraftment of electrical excitable nodal-like cardiomyocytes may thus explain the transient incidence of post-transplant ventricular tachycardia, although further large animal model studies will be required to control post-transplant arrhythmia

    Roles of MIWI, MILI and PLD6 in small RNA regulation in mouse growing oocytes

    Get PDF
    he mouse PIWI-interacting RNA (piRNA) pathway produces a class of 26–30-nucleotide (nt) small RNAs and is essential for spermatogenesis and retrotransposon repression. In oocytes, however, its regulation and function are poorly understood. In the present study, we investigated the consequences of loss of piRNA-pathway components in growing oocytes. When MILI (or PIWIL2), a PIWI family member, was depleted by gene knockout, almost all piRNAs disappeared. This severe loss of piRNA was accompanied by an increase in transcripts derived from specific retrotransposons, especially IAPs. MIWI (or PIWIL1) depletion had a smaller effect. In oocytes lacking PLD6 (or ZUCCHINI or MITOPLD), a mitochondrial nuclease/phospholipase involved in piRNA biogenesis in male germ cells, the piRNA level was decreased to 50% compared to wild-type, a phenotype much milder than that in males. Since PLD6 is essential for the creation of the 5΄ ends of primary piRNAs in males, the presence of mature piRNA in PLD6-depleted oocytes suggests the presence of compensating enzymes. Furthermore, we identified novel 21–23-nt small RNAs, termed spiRNAs, possessing a 10-nt complementarity with piRNAs, which were produced dependent on MILI and independent of DICER. Our study revealed the differences in the biogenesis and function of the piRNA pathway between sexes

    The Tudor-domain protein TDRD7, mutated in congenital cataract, controls the heat shock protein HSPB1 (HSP27) and lens fiber cell morphology

    Get PDF
    Mutations of the RNA granule component TDRD7 (OMIM: 611258) cause pediatric cataract. We applied an integrated approach to uncover the molecular pathology of cataract in Tdrd7−/− mice. Early postnatal Tdrd7−/− animals precipitously develop cataract suggesting a global-level breakdown/misregulation of key cellular processes. High-throughput RNA sequencing integrated with iSyTE-bioinformatics analysis identified the molecular chaperone and cytoskeletal modulator, HSPB1, among high-priority downregulated candidates in Tdrd7−/− lens. A protein fluorescence two-dimensional difference in-gel electrophoresis (2D-DIGE)-coupled mass spectrometry screen also identified HSPB1 downregulation, offering independent support for its importance to Tdrd7−/− cataractogenesis. Lens fiber cells normally undergo nuclear degradation for transparency, posing a challenge: how is their cell morphology, also critical for transparency, controlled post-nuclear degradation? HSPB1 functions in cytoskeletal maintenance, and its reduction in Tdrd7−/− lens precedes cataract, suggesting cytoskeletal defects may contribute to Tdrd7−/− cataract. In agreement, scanning electron microscopy (SEM) revealed abnormal fiber cell morphology in Tdrd7−/− lenses. Further, abnormal phalloidin and wheat germ agglutinin (WGA) staining of Tdrd7−/− fiber cells, particularly those exhibiting nuclear degradation, reveals distinct regulatory mechanisms control F-actin cytoskeletal and/or membrane maintenance in post-organelle degradation maturation stage fiber cells. Indeed, RNA immunoprecipitation identified Hspb1 mRNA in wild-type lens lysate TDRD7-pulldowns, and single-molecule RNA imaging showed co-localization of TDRD7 protein with cytoplasmic Hspb1 mRNA in differentiating fiber cells, suggesting that TDRD7–ribonucleoprotein complexes may be involved in optimal buildup of key factors. Finally, Hspb1 knockdown in Xenopus causes eye/lens defects. Together, these data uncover TDRD7’s novel upstream role in elevation of stress-responsive chaperones for cytoskeletal maintenance in post-nuclear degradation lens fiber cells, perturbation of which causes early-onset cataracts

    Human PSF concentrates DNA and stimulates duplex capture in DMC1-mediated homologous pairing

    Get PDF
    PSF is considered to have multiple functions in RNA processing, transcription and DNA repair by mitotic recombination. In the present study, we found that PSF is produced in spermatogonia, spermatocytes and spermatids, suggesting that PSF may also function in meiotic recombination. We tested the effect of PSF on homologous pairing by the meiosis-specific recombinase DMC1, and found that human PSF robustly stimulated it. PSF synergistically enhanced the formation of a synaptic complex containing DMC1, ssDNA and dsDNA during homologous pairing. The PSF-mediated DMC1 stimulation may be promoted by its DNA aggregation activity, which increases the local concentrations of ssDNA and dsDNA for homologous pairing by DMC1. These results suggested that PSF may function as an activator for the meiosis-specific recombinase DMC1 in higher eukaryotes

    Phenotypic Plasticity of Mouse Spermatogonial Stem Cells

    Get PDF
    BACKGROUND:Spermatogonial stem cells (SSCs) continuously undergo self-renewal division to support spermatogenesis. SSCs are thought to have a fixed phenotype, and development of a germ cell transplantation technique facilitated their characterization and prospective isolation in a deterministic manner; however, our in vitro SSC culture experiments indicated heterogeneity of cultured cells and suggested that they might not follow deterministic fate commitment in vitro. METHODOLOGY AND PRINCIPAL FINDINGS:In this study, we report phenotypic plasticity of SSCs. Although c-kit tyrosine kinase receptor (Kit) is not expressed in SSCs in vivo, it was upregulated when SSCs were cultured on laminin in vitro. Both Kit(-) and Kit(+) cells in culture showed comparable levels of SSC activity after germ cell transplantation. Unlike differentiating spermatogonia that depend on Kit for survival and proliferation, Kit expressed on SSCs did not play any role in SSC self-renewal. Moreover, Kit expression on SSCs changed dynamically once proliferation began after germ cell transplantation in vivo. CONCLUSIONS/SIGNIFICANCE:These results indicate that SSCs can change their phenotype according to their microenvironment and stochastically express Kit. Our results also suggest that activated and non-activated SSCs show distinct phenotypes
    corecore