5 research outputs found

    APF, HB-EGF, and EGF biomarkers in patients with ulcerative vs. non-ulcerative interstitial cystitis

    Get PDF
    BACKGROUND: Interstitial cystitis (IC) is a chronic bladder disorder, with symptoms including pelvic and or perineal pain, urinary frequency, and urgency. The etiology of IC is unknown, but sensitive and specific biomarkers have been described, including antiproliferative factor (APF), heparin-binding epidermal growth factor-like growth factor (HB-EGF), and epidermal growth factor (EGF). However, the relative sensitivity of these biomarkers in ulcerative vs. nonulcerative IC is unknown, and these markers have yet to be validated in another laboratory. We therefore measured these markers in urine from patients with or without Hunner's ulcer, as well as normal controls, patients with bladder cancer, and patients with bacterial cystitis, at the First Hospital of China Medical University. METHODS: Urine specimens were collected from two groups of Chinese IC patients (38 IC patients with Hunner's ulcers, 26 IC patients without Hunner's ulcers), 30 normal controls, 10 bacterial cystitis patients and 10 bladder cancer patients. APF activity was determined by measuring (3)H-thymidine incorporation in vitro, and HB-EGF and EGF levels were determined by ELISA. RESULTS: APF activity (inhibition of thymidine incorporation) was significantly greater in all IC patient urine specimens than in normal control specimens or in specimens from patients with bacterial cystitis or bladder cancer (p < 0.0001 for each comparison). Urine HB-EGF levels were also significantly lower and EGF levels significantly higher in both groups of IC patients than in the three control groups (p < 0.0001 for each comparison). Although APF and HB-EGF levels were similar in ulcerative and nonulcerative IC patients, EGF levels were significantly higher in IC patients with vs. without ulcers (p < 0.004). CONCLUSION: These findings indicate that APF, HB-EGF and EGF are good biomarkers for both ulcerative and nonulcerative IC and validate their measurement as biomarkers for IC in Chinese patients

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore