2,588 research outputs found
Feedback cooling of a cantilever's fundamental mode below 5 mK
We cool the fundamental mechanical mode of an ultrasoft silicon cantilever
from a base temperature of 2.2 K to 2.9 +/- 0.3 mK using active optomechanical
feedback. The lowest observed mode temperature is consistent with limits
determined by the properties of the cantilever and by the measurement noise.
For high feedback gain, the driven cantilever motion is found to suppress or
"squash" the optical interferometer intensity noise below the shot noise level.Comment: 4 pages, 6 figure
Nuclear spin relaxation induced by a mechanical resonator
We report on measurements of the spin lifetime of nuclear spins strongly
coupled to a micromechanical cantilever as used in magnetic resonance force
microscopy. We find that the rotating-frame correlation time of the statistical
nuclear polarization is set by the magneto-mechanical noise originating from
the thermal motion of the cantilever. Evidence is based on the effect of three
parameters: (1) the magnetic field gradient (the coupling strength), (2) the
Rabi frequency of the spins (the transition energy), and (3) the temperature of
the low-frequency mechanical modes. Experimental results are compared to
relaxation rates calculated from the spectral density of the magneto-mechanical
noise.Comment: 4 pages, 4 figure
Towards Efficient Sequential Pattern Mining in Temporal Uncertain Databases
Uncertain sequence databases are widely used to model data with inaccurate or imprecise timestamps in many real world applications. In this paper, we use uniform distributions to model uncertain timestamps and adopt possible world semantics to interpret temporal uncertain database. We design an incremental approach to manage temporal uncertainty efficiently, which is integrated into the classic pattern-growth SPM algorithm to mine uncertain sequential patterns. Extensive experiments prove that our algorithm performs well in both efficiency and scalability
Dynamical Properties of a Growing Surface on a Random Substrate
The dynamics of the discrete Gaussian model for the surface of a crystal
deposited on a disordered substrate is investigated by Monte Carlo simulations.
The mobility of the growing surface was studied as a function of a small
driving force and temperature . A continuous transition is found from
high-temperature phase characterized by linear response to a low-temperature
phase with nonlinear, temperature dependent response. In the simulated regime
of driving force the numerical results are in general agreement with recent
dynamic renormalization group predictions.Comment: 10 pages, latex, 3 figures, to appear in Phys. Rev. E (RC
Effective Hamiltonian study of excitations in a boson- fermion mixture with attraction between components
An effective Hamiltonian for the Bose subsystem in the mixture of ultracold
atomic clouds of bosons and fermions with mutual attractive interaction is used
for investigating collective excitation spectrum. The ground state and mode
frequencies of the Rb and K mixture are analyzed quantitatively
at zero temperature. We find analytically solutions of the hydrodynamics
equations in the Thomas- Fermi approximation. We discuss the relation between
the onset of collapse and collective modes softening and the dependence of
collective oscillations on scattering length and number of boson atoms.Comment: 9 pages, 5 figure
Acceleration effects of microbial inoculum on palm oil mill organic waste composting.
ABSTRACT
The acceleration effects of inoculum in composting of empty fruit bunches were investigated. Composting of empty fruit bunches fibres in two sizes, 4 cm and 2 cm length, were treated with microbial inoculum consisting of Agromonas, Aspergillus, Azotobacter, Bacillus, Celhdomonas, Chaetomium, Clostridium, Coprinus, Microbispora, Penicillium, Pseudomonas, Thermoactinomyces, Trichoderma and Trichurus in separate laboratory scale in-vessel of 30 liters volume. A control without inoculum with 4 cm length empty fruit bunches was also conducted in parallel. The compost piles were shift-turned weekly. Parameters such as moisture content, temperature, pH, and electrical conductivity were used to monitor the composting processes. The carbon-nitrogen ratio, UV-vis spectrophotometer test, and germination test were used to assess the maturity of compost. The results showed that the inoculum was effective in reducing the C/N ratio by 54% compared to control 46% and rapidly increasing the UV-vis absorption ratio in first three weeks. By using functional microbes, the composting of empty fruit bunches was reduced to 5 weeks compared to 9 weeks for those without inoculation. The acceleration effect was more prominent for the 2 cm length samples
Synthesis of hexahydrofuro[3,2-c]quinoline, a martinelline type analogue and investigation of its biological activity
2015-2016 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Wavelet domain compounding for speckle reduction in optical coherence tomography
Visibility of optical coherence tomography (OCT) images can be severely degraded by speckle noise. A computationally efficient despeckling approach that strongly reduces the speckle noise is reported. It is based on discrete wavelet transform (DWT), but eliminates the conventional process of threshold estimation. By decomposing an image into different levels, a set of sub-band images are generated, where speckle noise is additive. These sub-band images can be compounded to suppress the additive speckle noise, as DWT coefficients resulting from speckle noise tend to be approximately decorrelated. The final despeckled image is reconstructed by taking the inverse wavelet transform of the new compounded sub-band images. The performance of speckle reduction and edge preservation is controlled by a single parameter: the level of wavelet decomposition. The proposed technique is applied to intravascular OCT imaging of porcine carotid arterial wall and ophthalmic OCT images. Results demonstrate the effectiveness of this technique for speckle noise reduction and simultaneous edge preservation. The presented method is fast and easy to implement and to improve the quality of OCT images.published_or_final_versio
- …
