127 research outputs found

    Inherited Arrhythmia Syndromes Exome Sequencing Opens a New Door to Diagnosis∗

    Get PDF

    Cardiac structural and functional profile of patients with delayed QRS transition zone and sudden cardiac death

    Get PDF
    Delayed QRS transition zone in the precordial leads of the 12-lead electrocardiogram (ECG) has been recently associated with increased risk of sudden cardiac death (SCD), but the underlying mechanisms are unknown. We correlated echocardiographic findings with ECG and clinical characteristics to investigate how alterations in cardiac structure and function contribute to this risk marker. From the ongoing population-based Oregon Sudden Unexpected Death Study (catchment population similar to 1 million), SCD cases with prior ECG available (n = 627) were compared with controls (n = 801). Subjects with delayed transition at V-5 or later were identified, and clinical and echocardiographic patterns associated with delayed transition were analysed. Delayed transition was present in 31% of the SCD cases and 17% of the controls. These subjects were older and more likely to have cardiovascular risk factors and history of myocardial infarction. Delayed transition was associated with increased left ventricular (LV) mass (122.7 +/- 40.2 vs. 102.9 +/- 33.7 g/m(2); P <0.001), larger LV diameter (53.3 +/- 10.4 vs. 49.2 +/- 8.0 mm; P <0.001), and lower LV ejection fraction (LVEF) (46.4 +/- 15.7 vs. 55.6 +/- 12.5%; P <0.001). In multivariate analysis, delayed transition was independently associated with myocardial infarction, reduced LVEF, and LV hypertrophy. The association between delayed transition and SCD was independent of the LVEF (OR 1.57; 95% CI 1.04-2.38; P = 0.032). The underpinnings of delayed QRS transition zone extend beyond previous myocardial infarction and reduced LVEF. Since the association with sudden death is independent of these factors, this novel marker of myocardial electrical remodelling should be explored as a potential risk predictor of SCD.Peer reviewe

    Artificial Intelligence in Ventricular Arrhythmias and Sudden Death

    Get PDF
    Sudden cardiac arrest due to lethal ventricular arrhythmias is a major cause of mortality worldwide and results in more years of potential life lost than any individual cancer. Most of these sudden cardiac arrest events occur unexpectedly in individuals who have not been identified as high-risk due to the inadequacy of current risk stratification tools. Artificial intelligence tools are increasingly being used to solve complex problems and are poised to help with this major unmet need in the field of clinical electrophysiology. By leveraging large and detailed datasets, artificial intelligence-based prediction models have the potential to enhance the risk stratification of lethal ventricular arrhythmias. This review presents a synthesis of the published literature and a discussion of future directions in this field

    Iron Deposition following Chronic Myocardial Infarction as a Substrate for Cardiac Electrical Anomalies: Initial Findings in a Canine Model

    Get PDF
    Purpose: Iron deposition has been shown to occur following myocardial infarction (MI). We investigated whether such focal iron deposition within chronic MI lead to electrical anomalies. Methods: Two groups of dogs (ex-vivo (n = 12) and in-vivo (n = 10)) were studied at 16 weeks post MI. Hearts of animals from ex-vivo group were explanted and sectioned into infarcted and non-infarcted segments. Impedance spectroscopy was used to derive electrical permittivity () and conductivity (). Mass spectrometry was used to classify and characterize tissue sections with (IRON+) and without (IRON-) iron. Animals from in-vivo group underwent cardiac magnetic resonance imaging (CMR) for estimation of scar volume (late-gadolinium enhancement, LGE) and iron deposition (T2*) relative to left-ventricular volume. 24-hour electrocardiogram recordings were obtained and used to examine Heart Rate (HR), QT interval (QT), QT corrected for HR (QTc) and QTc dispersion (QTcd). In a fraction of these animals (n = 5), ultra-high resolution electroanatomical mapping (EAM) was performed, co-registered with LGE and T2* CMR and were used to characterize the spatial locations of isolated late potentials (ILPs). Results: Compared to IRON- sections, IRON+ sections had higher, but no difference in. A linear relationship was found between iron content and (p1.5%)) with similar scar volumes (7.28%±1.02% (Iron (1.5%)), p = 0.51) but markedly different iron volumes (1.12%±0.64% (Iron (1.5%)), p = 0.02), QT and QTc were elevated and QTcd was decreased in the group with the higher iron volume during the day, night and 24-hour period (p<0.05). EAMs co-registered with CMR images showed a greater tendency for ILPs to emerge from scar regions with iron versus without iron. Conclusion: The electrical behavior of infarcted hearts with iron appears to be different from those without iron. Iron within infarcted zones may evolve as an arrhythmogenic substrate in the post MI period

    Left Ventricular Geometry and Risk of Sudden Cardiac Arrest in Patients With Severely Reduced Ejection Fraction

    Get PDF
    Background-Recent reports indicate that specific left ventricular (LV) geometric patterns predict recurrent ventricular arrhythmias in patients with implantable cardioverter-defibrillators and reduced left ventricular ejection fraction (LVEF). However, this relationship has not been evaluated among patients at risk of sudden cardiac arrest (SCA) in the general population. Methods and Results-Adult SCA cases from the Oregon Sudden Unexpected Death Study were compared with geographic controls with no prior history of SCA. Archived echocardiograms performed closest and prior to the SCA event were reviewed. LV geometry was defined as normal (normal LV mass index [LVMI] and relative wall thickness [RWT]), concentric remodeling (normal LVMI and increased RWT), concentric hypertrophy (increased LVMI and RWT), or eccentric hypertrophy (increased LVMI and normal RWT). Analysis was restricted to those with LVEF Conclusions-Eccentric LV hypertrophy was independently associated with increased risk of SCA in subjects with EFPeer reviewe

    Syncope and risk of sudden cardiac arrest in coronary artery disease

    Get PDF
    Background: Syncope has been associated with increased risk of sudden cardiac arrest (SCA) in specific patient populations, such as hypertrophic cardiomyopathy, heart failure, and long QT syndrome, but data are lacking on the risk of SCA associated with syncope among patients with coronary artery disease (CAD), the most common cause of SCA. We investigated this association among CAD patients in the community. Methods: All cases of SCA due to CAD were prospectively identified in Portland, Oregon (population approximately 1 million) as part of the Oregon Sudden Unexpected Death Study 2002-2015, and compared to geographical controls. Detailed clinical information including history of syncope and cardiac investigations was obtained from medical records. Results: 2119 SCA cases (68.4 +/- 13.8 years, 66.9% male) and 746 controls (66.7 +/- 11.7 years, 67.0% male) were included in the analysis. 143 (6.8%) of cases had documented syncope prior to the SCA. SCA cases with syncope were > 5 years older and had more comorbidities than other SCA cases. After adjusting for clinical factors and left ventricular ejection fraction (LVEF), syncope was associated with increased risk of SCA (OR 2.8; 95%CI 1.68-4.85). When analysis was restricted to subjects with LVEF >= 50%, the risk of SCA associated with syncope remained significantly elevated (adjusted OR 3.1; 95%CI 1.68-5.79). Conclusions: Syncope was associated with increased risk of SCA in CAD patients even with preserved LV function. These findings suggest a role for this clinical marker among patients with CAD and normal LVEF, a large subgroup without any current means of SCA risk stratification. (C) 2016 Published by Elsevier Ireland Ltd.Peer reviewe

    Genome-Wide Association Study Identifies GPC5 as a Novel Genetic Locus Protective against Sudden Cardiac Arrest

    Get PDF
    BACKGROUND:Existing studies indicate a significant genetic component for sudden cardiac arrest (SCA) and genome-wide association studies (GWAS) provide an unbiased approach for identification of novel genes. We performed a GWAS to identify genetic determinants of SCA. METHODOLOGY/PRINCIPAL FINDINGS:We used a case-control design within the ongoing Oregon Sudden Unexpected Death Study (Oregon-SUDS). Cases (n = 424) were SCAs with coronary artery disease (CAD) among residents of Portland, OR (2002-07, population approximately 1,000,000) and controls (n = 226) were residents with CAD, but no history of SCA. All subjects were of White-European ancestry and GWAS was performed using Affymetrix 500K/5.0 and 6.0 arrays. High signal markers were genotyped in SCA cases (n = 521) identified from the Atherosclerosis Risk in Communities Study (ARIC) and the Cardiovascular Health Study (CHS) (combined n = 19,611). No SNPs reached genome-wide significance (p<5x10(-8)). SNPs at 6 loci were prioritized for follow-up primarily based on significance of p<10(-4) and proximity to a known gene (CSMD2, GPR37L1, LIN9, B4GALNT3, GPC5, and ZNF592). The minor allele of GPC5 (GLYPICAN 5, rs3864180) was associated with a lower risk of SCA in Oregon-SUDS, an effect that was also observed in ARIC/CHS whites (p<0.05) and blacks (p<0.04). In a combined Cox proportional hazards model analysis that adjusted for race, the minor allele exhibited a hazard ratio of 0.85 (95% CI 0.74 to 0.98; p<0.01). CONCLUSIONS/SIGNIFICANCE:A novel genetic locus for SCA, GPC5, was identified from Oregon-SUDS and successfully validated in the ARIC and CHS cohorts. Three other members of the Glypican family have been previously implicated in human disease, including cardiac conditions. The mechanism of this specific association requires further study

    Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study

    Get PDF
    Cardiovascular diseases (CVDs), principally ischemic heart disease (IHD) and stroke, are the leading cause of global mortality and a major contributor to disability. This paper reviews the magnitude of total CVD burden, including 13 underlying causes of cardiovascular death and 9 related risk factors, using estimates from the Global Burden of Disease (GBD) Study 2019. GBD, an ongoing multinational collaboration to provide comparable and consistent estimates of population health over time, used all available population-level data sources on incidence, prevalence, case fatality, mortality, and health risks to produce estimates for 204 countries and territories from 1990 to 2019. Prevalent cases of total CVD nearly doubled from 271 million (95% uncertainty interval [UI]: 257 to 285 million) in 1990 to 523 million (95% UI: 497 to 550 million) in 2019, and the number of CVD deaths steadily increased from 12.1 million (95% UI:11.4 to 12.6 million) in 1990, reaching 18.6 million (95% UI: 17.1 to 19.7 million) in 2019. The global trends for disability-adjusted life years (DALYs) and years of life lost also increased significantly, and years lived with disability doubled from 17.7 million (95% UI: 12.9 to 22.5 million) to 34.4 million (95% UI:24.9 to 43.6 million) over that period. The total number of DALYs due to IHD has risen steadily since 1990, reaching 182 million (95% UI: 170 to 194 million) DALYs, 9.14 million (95% UI: 8.40 to 9.74 million) deaths in the year 2019, and 197 million (95% UI: 178 to 220 million) prevalent cases of IHD in 2019. The total number of DALYs due to stroke has risen steadily since 1990, reaching 143 million (95% UI: 133 to 153 million) DALYs, 6.55 million (95% UI: 6.00 to 7.02 million) deaths in the year 2019, and 101 million (95% UI: 93.2 to 111 million) prevalent cases of stroke in 2019. Cardiovascular diseases remain the leading cause of disease burden in the world. CVD burden continues its decades-long rise for almost all countries outside high-income countries, and alarmingly, the age-standardized rate of CVD has begun to rise in some locations where it was previously declining in high-income countries. There is an urgent need to focus on implementing existing cost-effective policies and interventions if the world is to meet the targets for Sustainable Development Goal 3 and achieve a 30% reduction in premature mortality due to noncommunicable diseases

    Electrocardiographic Deep Learning for Predicting Post-Procedural Mortality

    Full text link
    Background. Pre-operative risk assessments used in clinical practice are limited in their ability to identify risk for post-operative mortality. We hypothesize that electrocardiograms contain hidden risk markers that can help prognosticate post-operative mortality. Methods. In a derivation cohort of 45,969 pre-operative patients (age 59+- 19 years, 55 percent women), a deep learning algorithm was developed to leverage waveform signals from pre-operative ECGs to discriminate post-operative mortality. Model performance was assessed in a holdout internal test dataset and in two external hospital cohorts and compared with the Revised Cardiac Risk Index (RCRI) score. Results. In the derivation cohort, there were 1,452 deaths. The algorithm discriminates mortality with an AUC of 0.83 (95% CI 0.79-0.87) surpassing the discrimination of the RCRI score with an AUC of 0.67 (CI 0.61-0.72) in the held out test cohort. Patients determined to be high risk by the deep learning model's risk prediction had an unadjusted odds ratio (OR) of 8.83 (5.57-13.20) for post-operative mortality as compared to an unadjusted OR of 2.08 (CI 0.77-3.50) for post-operative mortality for RCRI greater than 2. The deep learning algorithm performed similarly for patients undergoing cardiac surgery with an AUC of 0.85 (CI 0.77-0.92), non-cardiac surgery with an AUC of 0.83 (0.79-0.88), and catherization or endoscopy suite procedures with an AUC of 0.76 (0.72-0.81). The algorithm similarly discriminated risk for mortality in two separate external validation cohorts from independent healthcare systems with AUCs of 0.79 (0.75-0.83) and 0.75 (0.74-0.76) respectively. Conclusion. The findings demonstrate how a novel deep learning algorithm, applied to pre-operative ECGs, can improve discrimination of post-operative mortality
    • …
    corecore