594 research outputs found

    Energy spectrum of cascades generated by muons in Baksan underground scintillation telescope

    Get PDF
    Spectrum of cascades generated by cosmic ray muons underground is presented. The mean zenith angle of the muon arrival is theta=35 deg the depth approx. 1000 hg/sq cm. In cascades energy range 700 GeV the measured spectrum is in agreement with the sea-level integral muon spectrum index gamma=3.0. Some decrease of this exponent has been found in the range 4000 Gev

    Primary chemical composition from simultaneous recording of muons induced cascades and accompanying muon group underground

    Get PDF
    A new method to estimate the mean atomic number of primary cosmic rays in energy range 10 to the 3rd power to 10 to the 5th power Gev/nucleon is suggested. The Baksan underground scintillation telescope data are used for this analysis. The results of 7500 h run of this experiment are presented

    Transversity and Transverse Spin in Nucleon Structure through SIDIS at Jefferson Lab

    Full text link
    The JLab 12 GeV upgrade with a proposed solenoid detector and the CLAS12 detector can provide the granularity and three-dimensional kinematic coverage in longitudinal and transverse momentum, 0.1x0.50.1\le x \le 0.5, 0.3z0.70.3 \le z \le 0.7 with PT1.5GeVP_T \le 1.5 {\rm GeV} to precisely measure the leading twist chiral-odd and TT-odd quark distribution and fragmentation functions in SIDIS. The large xx experimental reach of these detectors with a 12 GeV CEBAF at JLab makes it {\em ideal} to obtain precise data on the {\em valence-dominated} transversity distribution function and to access the tensor charge.Comment: 7 Pages, 2 figures. Summary of the working group on Transversity and Transverse Spin Physics, from the workshop, "Inclusive and Semi-Inclusive Spin Physics with High Luminosity and LargeAcceptance at 11 GeV", Thomas Jefferson National Accelerator Facility (JLAB), December 13-14, 2006, Jefferson Lab, Newport News, VA USA. Serves as input for the Nuclear Physics Long Range Plan on QCD and Hadron Physic

    TCRs with segment TRAV9-2 or a CDR3 histidine are overrepresented among nickel-specific CD4+ T cells

    Get PDF
    Background: Nickel is the most frequent cause of T cell-mediated allergic contact dermatitis worldwide. In vitro, CD4+ T cells from all donors respond to nickel but the involved αβ T cell receptor (TCR) repertoire has not been comprehensively analyzed. Methods: We introduce CD154 (CD40L) upregulation as a fast, unbiased, and quantitative method to detect nickel-specific CD4+ T cells ex vivo in blood of clinically characterized allergic and non allergic donors. Naïve (CCR7+ CD45RA+) and memory (not naïve) CD154+ CD4+ T cells were analyzed by flow cytometry after 5 hours of stimulation with 200 µmol/L NiSO4 ., TCR α- and β-chains of sorted nickel-specific and control cells were studied by high-throughput sequencing. Results: Stimulation of PBMCs with NiSO4 induced CD154 expression on ~0.1% (mean) of naïve and memory CD4+ T cells. In allergic donors with recent positive patch test, memory frequencies further increased ~13-fold and were associated with markers of in vivo activation. CD154 expression was TCR-mediated since single clones could be specifically restimulated. Among nickel-specific CD4+ T cells of allergic and non allergic donors, TCRs expressing the α-chain segment TRAV9-2 or a histidine in their α- or β-chain complementarity determining region 3 (CDR3) were highly overrepresented. Conclusions: Induced CD154 expression represents a reliable method to study nickel-specific CD4+ T cells. TCRs with particular features respond in all donors, while strongly increased blood frequencies indicate nickel allergy for some donors. Our approach may be extended to other contact allergens for the further development of diagnostic and predictive in vitro tests

    Very-high energy gamma-ray astronomy: A 23-year success story in high-energy astroparticle physics

    Full text link
    Very-high energy (VHE) gamma quanta contribute only a minuscule fraction - below one per million - to the flux of cosmic rays. Nevertheless, being neutral particles they are currently the best "messengers" of processes from the relativistic/ultra-relativistic Universe because they can be extrapolated back to their origin. The window of VHE gamma rays was opened only in 1989 by the Whipple collaboration, reporting the observation of TeV gamma rays from the Crab nebula. After a slow start, this new field of research is now rapidly expanding with the discovery of more than 150 VHE gamma-ray emitting sources. Progress is intimately related with the steady improvement of detectors and rapidly increasing computing power. We give an overview of the early attempts before and around 1989 and the progress after the pioneering work of the Whipple collaboration. The main focus of this article is on the development of experimental techniques for Earth-bound gamma-ray detectors; consequently, more emphasis is given to those experiments that made an initial breakthrough rather than to the successors which often had and have a similar (sometimes even higher) scientific output as the pioneering experiments. The considered energy threshold is about 30 GeV. At lower energies, observations can presently only be performed with balloon or satellite-borne detectors. Irrespective of the stormy experimental progress, the success story could not have been called a success story without a broad scientific output. Therefore we conclude this article with a summary of the scientific rationales and main results achieved over the last two decades.Comment: 45 pages, 38 figures, review prepared for EPJ-H special issue "Cosmic rays, gamma rays and neutrinos: A survey of 100 years of research

    Nuclear transparency and effective kaon-nucleon cross section from the A(e, e'K+) reaction

    Full text link
    We have determined the transparency of the nuclear medium to kaons from A(e,eK+)A(e,e^{'} K^{+}) measurements on 12^{12}C, 63^{63}Cu, and 197^{197}Au targets. The measurements were performed at the Jefferson Laboratory and span a range in four-momentum-transfer squared Q2^2=1.1 -- 3.0 GeV2^2. The nuclear transparency was defined as the ratio of measured kaon electroproduction cross sections with respect to deuterium, (σA/σD\sigma^{A}/\sigma^{D}). We further extracted the atomic number (AA) dependence of the transparency as parametrized by T=(A/2)α1T= (A/2)^{\alpha-1} and, within a simple model assumption, the in-medium effective kaon-nucleon cross sections. The effective cross sections extracted from the electroproduction data are found to be smaller than the free cross sections determined from kaon-nucleon scattering experiments, and the parameter α\alpha was found to be significantly larger than those obtained from kaon-nucleus scattering. We have included similar comparisons between pion- and proton-nucleon effective cross sections as determined from electron scattering experiments, and pion-nucleus and proton-nucleus scattering data.Comment: 7 pages, 5 figure

    Study of the A(e,e'π+\pi^+) Reaction on 1^1H, 2^2H, 12^{12}C, 27^{27}Al, 63^{63}Cu and 197^{197}Au

    Full text link
    Cross sections for the p(e,eπ+e,e'\pi^{+})n process on 1^1H, 2^2H, 12^{12}C, 27^{27}Al, 63^{63}Cu and 197^{197}Au targets were measured at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) in order to extract the nuclear transparencies. Data were taken for four-momentum transfers ranging from Q2Q^2=1.1 to 4.8 GeV2^2 for a fixed center of mass energy of WW=2.14 GeV. The ratio of σL\sigma_L and σT\sigma_T was extracted from the measured cross sections for 1^1H, 2^2H, 12^{12}C and 63^{63}Cu targets at Q2Q^2 = 2.15 and 4.0 GeV2^2 allowing for additional studies of the reaction mechanism. The experimental setup and the analysis of the data are described in detail including systematic studies needed to obtain the results. The results for the nuclear transparency and the differential cross sections as a function of the pion momentum at the different values of Q2Q^2 are presented. Global features of the data are discussed and the data are compared with the results of model calculations for the p(e,eπ+e,e'\pi^{+})n reaction from nuclear targets.Comment: 28 pages, 19 figures, submited to PR

    Measurement of the 3He(e,e'p)pn reaction at high missing energies and momenta

    Full text link
    Results of the Jefferson Lab Hall A quasielastic 3He(e,e'p)pn measurements are presented. These measurements were performed at fixed transferred momentum and energy, q = 1502 MeV/c and omega = 840 MeV, respectively, for missing momenta p_m up to 1 GeV/c and missing energies in the continuum region, up to pion threshold; this kinematic coverage is much more extensive than that of any previous experiment. The cross section data are presented along with the effective momentum density distribution and compared to theoretical models.Comment: 5 pages, 3 figures, updated to reflect published paper: minor text changes from previous version along with updated and added reference
    corecore