16 research outputs found

    Precision electron polarimetry

    Full text link
    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. M{\o}ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at ~300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100\%-polarized electron target for M{\o}ller polarimetry

    MERADGEN 1.0: Monte Carlo generator for the simulation of radiative events in parity conserving doubly-polarized Moller scattering

    Full text link
    The Monte Carlo generator MERADGEN 1.0 for the simulation of radiative events in parity conserving doubly-polarized Moller scattering has been developed. Analytical integration wherever it is possible provides rather fast and accurate generation. Some numerical tests and histograms are presented.Comment: 23 pages, 4 figure

    Is the LHCb Pc(4312)+P_c(4312)^+ plausible in the GlueX γp→J/ψp\gamma p\to J/\psi p total cross sections ?

    Full text link
    New high-statistics total cross section data for γp→J/ψp\gamma p\to J/\psi p from the GLUonic EXcitation (GlueX) experiment are fitted in a search for the exotic Pc(4312)+P_c(4312)^+ state observed by the Large Hadron Collider beauty (LHCb) collaboration. The integrated luminosity of this GlueX experiment was about 320 pb−1320~\mathrm{pb^{-1}}. The fits show that destructive interference involving an SS-wave resonance and associated non-resonance background produces a sharp dip structure about 75 MeV75~\mathrm{MeV} below the LHCb mass, in the same location as a similar structure is seen in the data. Limitations of the employed model and the need for improved statistics are discussed.Comment: 4 pages, 3 figures, 2 table

    The GlueX DIRC Project

    Full text link
    The GlueX experiment was designed to search for and study the pattern of gluonic excitations in the meson spectrum produced through photoproduction reactions at a new tagged photon beam facility in Hall D at Jefferson Laboratory. The particle identification capabilities of the GlueX experiment will be enhanced by constructing a DIRC (Detection of Internally Reflected Cherenkov light) detector, utilizing components of the decommissioned BaBar DIRC. The DIRC will allow systematic studies of kaon final states that are essential for inferring the quark flavor content of both hybrid and conventional mesons. The design for the GlueX DIRC is presented, including the new expansion volumes that are currently under development.Comment: 8 pages, 6 figure

    Conceptual Design of Beryllium Target for the KLF Project

    Get PDF
    The Kaon Production Target (KPT) is an important component of the proposed K-Long facility which will be operated in JLab Hall~D, targeting strange baryon and meson spectroscopy. In this note we present a conceptual design for the Be-target assembly for the planned K-Long beam line, which will be used along with the GlueX spectrometer in its standard configuration for the proposed experiments. The high quality 12-GeV CEBAF electron beam enables production of a KL_L flux at the GlueX target on the order of 1×104KL/sec1\times 10^4 K_L/sec, which exceeds the KL_L flux previously attained at SLAC by three orders of magnitude. An intense KL_L beam would open a new window of opportunity not only to locate "missing resonances" in the strange hadron spectrum, but also to establish their properties by studying different decay channels systematically. The most important and radiation damaging background in KL_L production is due to neutrons. The Monte Carlo simulations for the proposed conceptual design of KPT show that the resulting neutron and gamma flux lead to a prompt radiation dose rate for the KLF experiment that is below the JLab Radiation Control Department radiation dose rate limits in the experimental hall and at the site boundary, and will not substantially affect the performance of the spectrometer.Comment: 9 pages, 9 figure

    Precision measurements of A1N in the deep inelastic regime

    Get PDF
    We have performed precision measurements of the double-spin virtual-photon asymmetry A1A1 on the neutron in the deep inelastic scattering regime, using an open-geometry, large-acceptance spectrometer and a longitudinally and transversely polarized 3He target. Our data cover a wide kinematic range 0.277≤x≤0.5480.277≤x≤0.548 at an average Q2Q2 value of 3.078 (GeV/c)2, doubling the available high-precision neutron data in this x range. We have combined our results with world data on proton targets to make a leading-order extraction of the ratio of polarized-to-unpolarized parton distribution functions for up quarks and for down quarks in the same kinematic range. Our data are consistent with a previous observation of anA1n zero crossing near x=0.5x=0.5. We find no evidence of a transition to a positive slope in(Δd+Δd¯)/(d+d¯) up to x=0.548x=0.548

    Jefferson Lab Report

    Get PDF
    Jefferson Laboratory is finishing a major upgrade and has already started operations with the 12 GeV continuous electron beam. The main research direction is the study of the structure of hadrons, including a search for gluon excitations in the spectra of light mesons and baryons, and studies of multidimensional images of the nucleon. Studied of certain properties of atomic nuclei are also ongoing. There is also an active program of searching for effects beyond the Standard Model in parity-violating electron scattering, as well as a search for new particles
    corecore