20 research outputs found

    Macrophage Replication Screen Identifies a Novel Francisella Hydroperoxide Resistance Protein Involved in Virulence

    Get PDF
    Francisella tularensis is a Gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI), validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and demonstrates that FTN_1133 is an important novel mediator of oxidative stress resistance

    In Vitro Antimicrobial Activity of Gel Containing the Herbal Ball Extract against Propionibacterium acnes

    No full text
    The herbal ball has been used as a Thai traditional medicine for relieving many diseases including acne. However, the application process of the herbal ball in practice is complicated and time consuming. The objective of this work was to utilize an herbal ball extract to formulate a gel to reach a more favorable use of the herbal ball for acne treatment. An herbal ball consisting of Andrographis paniculata, Centella asiatica, the Benchalokawichian remedy and the stem bark powder of Hesperethusa crenulata was prepared. The obtained herbal ball was steamed and squeezed to obtain the extract. Gel formulations containing the herbal ball extract at concentrations of 0.1, 1 and 5% w/w were prepared based on a carbomer gel. The herbal ball extract had antioxidant (EC50 = 219.27 Β± 36.98 ΞΌg/mL) and anti Propionibacterium acnes activities (minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) = 31.25 ΞΌg/mL). The 5% w/w gel formulation had antimicrobial activity against P. acnes, showing an inhibition zone value of 10.00 Β± 1.00 mm. This indicates that the developed gel formulation has potential for acne treatment. In comparison to the traditional method of herbal ball usage, the application of herbal ball extract in the form of gel should be more convenient to use

    lkyl Hydroperoxide Reductase Is Required for Helicobacter cinaedi Intestinal Colonization and Survival under Oxidative Stress in BALB/c and BALB/c Interleukin-10-/- Mice

    No full text
    Helicobacter cinaedi, a common human intestinal bacterium, has been implicated in various enteric and systemic diseases in normal and immunocompromised patients. Protection against oxidative stress is a crucial component of bacterium-host interactions. Alkyl hydroperoxide reductase C (AhpC) is an enzyme responsible for detoxification of peroxides and is important in protection from peroxide-induced stress. H. cinaedi possesses a single ahpC, which was investigated with respect to its role in bacterial survival during oxidative stress. The H. cinaedi ahpC mutant had diminished resistance to organic hydroperoxide toxicity but increased hydrogen peroxide resistance compared with the wild-type (WT) strain. The mutant also exhibited an oxygen-sensitive phenotype and was more susceptible to killing by macrophages than the WT strain. In vivo experiments in BALB/c and BALB/c interleukin-10 (IL-10)βˆ’/βˆ’ mice revealed that the cecal colonizing ability of the ahpC mutant was significantly reduced. The mutant also had diminished ability to induce bacterium-specific immune responses in vivo, as shown by immunoglobulin (IgG2a and IgG1) serum levels. Collectively, these data suggest that H. cinaedi ahpC not only contributes to protecting the organism against oxidative stress but also alters its pathogenic properties in vivo.National Institutes of Health (U.S.) (grant R01CA067529)National Institutes of Health (U.S.) (grant R01DK052413)National Institutes of Health (U.S.) (grant R01RR032307)National Institutes of Health (U.S.) (grant P01CA26731)National Institutes of Health (U.S.) (grant P30ES002109

    The Pseudomonas aeruginosa multidrug efflux regulator MexR uses an oxidation-sensing mechanism

    No full text
    MexR is a MarR family protein that negatively regulates multidrug efflux systems in the human pathogen Pseudomonas aeruginosa. The mechanism of MexR-regulated antibiotic resistance has never been elucidated in the past. We present here that two Cys residues in MexR are redox-active. They form intermonomer disulfide bonds in MexR dimer with a redox potential of βˆ’155 mV. This MexR oxidation leads to its dissociation from promoter DNA, derepression of the mexAB–oprM drug efflux operon, and increased antibiotic resistance of P. aeruginosa. We show computationally that the formation of disulfide bonds is consistent with a conformation change that prevents the oxidized MexR from binding to DNA. Collectively, the results reveal that MexR is a redox regulator that senses peroxide stress to mediate antibiotic resistance in P. aeruginosa
    corecore