34 research outputs found

    The role of coordinated regulation and aromatic metabolites in activating the mar/sox/rob regulon of Escherichia coli

    Get PDF
    Bacterial resistance to antibiotics has focused primarily on the role of acquired genetic elements contained in transposons and plasmids. In contrast to this view, many bacterial species are equipped with intrinsic mechanisms to survive exposure to a wide variety of antimicrobial compounds. This form of resistance is mediated through regulated expression of efflux pump systems, reducing enzymes, and enzymes in cellular metabolism. Modulating this response in Escherichia coli are three homologous, transcription factors: MarA, SoxS, and Rob. Together, these transcription factors serve as master regulators of the extensive mar/sox/rob regulon that has been directly implicated in multidrug resistance found in clinical and laboratory isolates. In this work, we examine the degree of genetic cross-talk between these regulatory systems and the cooperative role of these three transcriptional regulators in activating downstream targets. The overarching goal of this work is to provide an integrated model for the mar/sox/rob regulatory network. First, the role of MarA, SoxS, and Rob in cross-regulating and auto-regulating expression from the marRAB, soxRS, and rob loci is explored. Previous evidence has suggested the potential for a fully interconnected transcriptional regulatory network between marRAB, soxRS, and rob. Using a genetic approach, the transcription-level interaction between the marRAB, soxRS, and rob systems was dissected and a more complete model is proposed. As a corollary, evidence is presented to support a model where MarA serves a conditional auto-repressor of its own expression. Similarly, genetic and biochemical evidence is presented showing the global nutritional regulator, cyclic AMP receptor protein (CRP) interacts directly with the marRAB promoter region. Second, the role of MarA and Rob in coordinately regulating the reduction of OmpF expression during drug exposure is examined. The canonical model for this event argues that up-regulated expression of MicF (a small RNA regulator of OmpF translation), mediated by MarA, SoxS, and Rob, is the causal agent of OmpF reduction. Evidence is here provided that MarA and Rob function as independent pathways for micF promoter activation. Likewise, data is presented to suggest the possibility of a MicF-independent pathway for OmpF reduction that is regulated by MarA. Additionally, the reduction in OmpF expression in tolC mutants is found to be the result of Rob-dependent activation of MicF. Finally, genetic and biochemical data is presented that demonstrates the role of aromatic metabolites in activating the mar/sox/rob regulon through direct interaction with the repressor protein, MarR. Collectively, these results provide continuing steps towards an integrated view of the mar/sox/rob regulon and cellular physiology

    Species interactions differ in their genetic robustness

    Get PDF
    Conflict and cooperation between bacterial species drive the composition and function of microbial communities. Stability of these emergent properties will be influenced by the degree to which species' interactions are robust to genetic perturbations. We use genome-scale metabolic modeling to computationally analyze the impact of genetic changes when Escherichia coli and Salmonella enterica compete, or cooperate. We systematically knocked out in silico each reaction in the metabolic network of E. coli to construct all 2583 mutant stoichiometric models. Then, using a recently developed multi-scale computational framework, we simulated the growth of each mutant E. coli in the presence of S. enterica. The type of interaction between species was set by modulating the initial metabolites present in the environment. We found that the community was most robust to genetic perturbations when the organisms were cooperating. Species ratios were more stable in the cooperative community, and community biomass had equal variance in the two contexts. Additionally, the number of mutations that have a substantial effect is lower when the species cooperate than when they are competing. In contrast, when mutations were added to the S. enterica network the system was more robust when the bacteria were competing. These results highlight the utility of connecting metabolic mechanisms and studies of ecological stability. Cooperation and conflict alter the connection between genetic changes and properties that emerge at higher levels of biological organization.The authors thank reviewers for comments that substantially improved this manuscript. BG and DS were partially supported by grants from the US Department of Energy (DE-SC0004962) and NIH (R01GM089978 and R01GM103502). (DE-SC0004962 - US Department of Energy; R01GM089978 - NIH; R01GM103502 - NIH)Published versio

    A novel pair of inducible expression vectors for use in Methylobacterium extorquens

    Get PDF
    Background: Due to the ever increasing use of diverse microbial taxa in basic research and industrial settings, there is a growing need for genetic tools to alter the physiology of these organisms. In particular, there is a dearth of inducible expression systems available for bacteria outside commonly used Ī³-proteobacteria, such as Escherichia coli or Pseudomonas species. To this end, we have sought to develop a pair of inducible expression vectors for use in the Ī±-proteobacterium Methylobacterium extorquens, a model methylotroph. Findings: We found that the P R promoter from rhizobial phage 16-3 was active in M. extorquens and engineered the promoter to be inducible by either p-isopropyl benzoate (cumate) or anhydrotetracycline. These hybrid promoters, P R/cmtO and P R/tetO, were found to have high levels of expression in M. extorquens with a regulatory range of 10-fold and 30-fold, respectively. Compared to an existing cumate-inducible (10-fold range), high-level expression system for M. extorquens, P R/cmtO and P R/tetO have 33% of the maximal activity but were able to repress gene expression 3 and 8-fold greater, respectively. Both promoters were observed to exhibit homogeneous, titratable activation dynamics rather than on-off, switch-like behavior. The utility of these promoters was further demonstrated by complementing loss of function of ftfL - essential for growth on methanol - where we show P R/tetO is capable of not only fully complementing function but also producing a conditional null phenotype. These promoters have been incorporated into a broad-host-range backbone allowing for potential use in a variety of bacterial hosts. Conclusions: We have developed two novel expression systems for use in M. extorquens. The expression range of these vectors should allow for increased ability to explore cellular physiology in M. extorquens. Further, the P R/tetO promoter is capable of producing conditional null phenotypes, previously unattainable in M. extorquens. As both expression systems rely on the use of membrane permeable inducers, we suspect these expression vectors will be useful for ectopic gene expression in numerous proteobacteria

    Aromatic Acid Metabolites of Escherichia coli K-12 Can Induce the marRAB Operonā–æ ā€ 

    No full text
    MarR is a key regulator of the marRAB operon involved in antibiotic resistance and solvent stress tolerance in Escherichia coli. We show that two metabolic intermediates, 2,3-dihydroxybenzoate and anthranilate, involved in enterobactin and tryptophan biosynthesis, respectively, can activate marRAB transcription. We also found that a third intermediate involved in ubiquinone biosynthesis, 4-hydroxybenzoate, activates marRAB transcription in the absence of TolC. Of the three, however, only 2,3-dihydroxybenzoate directly binds MarR and affects its activity

    Species interactions differ in their genetic robustness

    No full text
    Conflict and cooperation between bacterial species drive the composition and function of microbial communities. Stability of these emergent properties will be influenced by the degree to which species' interactions are robust to genetic perturbations. We use genome-scale metabolic modeling to computationally analyze the impact of genetic changes when Escherichia coli and Salmonella enterica compete, or cooperate. We systematically knocked out in silico each reaction in the metabolic network of E. coli to construct all 2583 mutant stoichiometric models. Then, using a recently developed multi-scale computational framework, we simulated the growth of each mutant E. coli in the presence of S. enterica. The type of interaction between species was set by modulating the initial metabolites present in the environment. We found that the community was most robust to genetic perturbations when the organisms were cooperating. Species ratios were more stable in the cooperative community, and community biomass had equal variance in the two contexts. Additionally, the number of mutations that have a substantial effect is lower when the species cooperate than when they are competing. In contrast, when mutations were added to the S. enterica network the system was more robust when the bacteria were competing. These results highlight the utility of connecting metabolic mechanisms and studies of ecological stability. Cooperation and conflict alter the connection between genetic changes and properties that emerge at higher levels of biological organization

    Parallel and Divergent Evolutionary Solutions for the Optimization of an Engineered Central Metabolism in Methylobacterium extorquens AM1

    No full text
    Bioengineering holds great promise to provide fast and efficient biocatalysts for methanol-based biotechnology, but necessitates proven methods to optimize physiology in engineered strains. Here, we highlight experimental evolution as an effective means for optimizing an engineered Methylobacterium extorquens AM1. Replacement of the native formaldehyde oxidation pathway with a functional analog substantially decreased growth in an engineered Methylobacterium, but growth rapidly recovered after six hundred generations of evolution on methanol. We used whole-genome sequencing to identify the basis of adaptation in eight replicate evolved strains, and examined genomic changes in light of other growth and physiological data. We observed great variety in the numbers and types of mutations that occurred, including instances of parallel mutations at targets that may have been ā€œrationalizedā€ by the bioengineer, plus other ā€œillogicalā€ mutations that demonstrate the ability of evolution to expose unforeseen optimization solutions. Notably, we investigated mutations to RNA polymerase, which provided a massive growth benefit but are linked to highly aberrant transcriptional profiles. Overall, we highlight the power of experimental evolution to present genetic and physiological solutions for strain optimization, particularly in systems where the challenges of engineering are too many or too difficult to overcome via traditional engineering methods
    corecore