138 research outputs found

    The involvement of jasmonates and ethylene in Alternaria alternata f. sp. lycopersici toxin-induced tomato cell death

    Get PDF
    Previous studies have shown that an ethylene (ET)-dependent pathway is involved in the cell death signalling triggered by Alternaria alternata f. sp. lycopersici (AAL) toxin in detached tomato (Solanum lycopersicum) leaves. In this study, the role of jasmonic acid (JA) signalling in programmed cell death (PCD) induced by AAL toxin was analysed using a 35S::prosystemin transgenic line (35S::prosys), a JA-deficient mutant spr2, and a JA-insensitive mutant jai1. The results indicated that JA biosynthesis and signalling play a positive role in the AAL toxin-induced PCD process. In addition, treatment with the exogenous ET action inhibitor silver thiosulphate (STS) greatly suppressed necrotic lesions in 35S::prosys leaves, although 35S::prosys leaflets co-treated with AAL toxin and STS still have a significant high relative conductivity. Application of 1-aminocyclopropane-1-carboxylic acid (ACC) markedly enhanced the sensitivity of spr2 and jai1 mutants to the toxin. However, compared with AAL toxin treatment alone, exogenous application of JA to the ET-insensitive mutant Never ripe (Nr) did not alter AAL toxin-induced cell death. In addition, the reduced ET-mediated gene expression in jai1 leaves was restored by co-treatment with ACC and AAL toxin. Furthermore, JA treatment restored the decreased expression of ET biosynthetic genes but not ET-responsive genes in the Nr mutant compared with the toxin treatment alone. Based on these results, it is proposed that both JA and ET promote the AAL toxin-induced cell death alone, and the JAI1 receptor-dependent JA pathway also acts upstream of ET biosynthesis in AAL toxin-triggered PCD

    Plant defense negates pathogen manipulation of vector behavior

    Get PDF
    1. Although many vector‐borne plant pathogens can alter vector behaviour to the pathogen\u27s benefit, how plants might counter such manipulation is unknown. 2. In the Tomato yellow leaf curl virus (‘TYLCV’)–Bemisia tabaci–tomato interaction, TYLCV‐mediated changes in Bemisia feeding improves viral uptake and transmission. We tested how jasmonic acid (‘JA’), a central regulator of plant antiherbivore defences, affected the ability of TYLCV to (A) manipulate Bemisia behaviour; and (B) infect plants. 3. Viruliferous Bemisia fed much more than virus‐free whiteflies on JA‐deficient plants, more than virus‐free whiteflies on controls, and similarly on high‐JA plants. 4. When TYLCV was transmitted via whiteflies, infection levels were lower in high‐JA plants relative to JA‐deficient and control plants. When TYLCV was transmitted via direct injection, JA‐overexpressed and JA‐deficient plants had similar infection levels. The JA‐mediated cessation of vector manipulation thus reduced infection and lessened pathogen impact. 5. The presence of the JA pathway in many plant species suggests that similar interactions may be widespread in nature

    Variation in both host defense and prior herbivory can alter plant-vector-virus interactions

    Get PDF
    Background: While virus-vector-host interactions have been a major focus of both basic and applied ecological research, little is known about how different levels of plant defense interact with prior herbivory to affect these relationships. We used genetically-modified strains of tomato (Solanum lycopersicum) varying in the jasmonic acid (JA) plant defense pathways to explore how plant defense and prior herbivory affects a plant virus (tomato yellow leaf curl virus, ‘TYLCV’), its vector (the whitefly Bemisia tabaci MED), and the host. Results: Virus-free MED preferred low-JA over high-JA plants and had lower fitness on high-JA plants. Viruliferous MED preferred low-JA plants but their survival was unaffected by JA levels. While virus-free MED did not lower plant JA levels, viruliferous MED decreased both JA levels and the expression of JA-related genes. Infestation by viruliferous MED reduced plant JA levels. In preference tests, neither virus-free nor viruliferous MED discriminated among JA-varying plants previously exposed to virus-free MED. However, both virus-free and viruliferous MED preferred low-JA plant genotypes when choosing between plants that had both been previously exposed to viruliferous MED. The enhanced preference for low-JA genotypes appears linked to the volatile compound neophytadiene, which was found only in whitefly-infested plants and at concentrations inversely related to plant JA levels. Conclusions: Our findings illustrate how plant defense can interact with prior herbivory to affect both a plant virus and its whitefly vector, and confirm the induction of neophytadiene by MED. The apparent attraction of MED to neophytadiene may prove useful in pest detection and management

    A case study on the impacts of future climate change on soybean yield and countermeasures in Fujin city of Heilongjiang province, China

    Get PDF
    Global climate change poses a great impact on crop growth, development and yield. Soybean production in Northeast China, which is one of the traditional dominant soybean production areas in China, is of great significance for developing the domestic soybean industry and reducing dependence on imported soybeans. Therefore, it is crucial to evaluate the impacts of future climate change on soybean yield in Northeast China, and to propose reasonable adaptation measures. In this study, we took Fujin city of Heilongjiang province in Northeast China as an example, and used the CROPGRO-soybean model in DSSAT (Decision Support System for Agrotechnology Transfer) to simulate the impacts of future climate change on soybean yield in the four periods of the 2020s (2021-2030), 2030s (2031-2040), 2040s (2041-2050) and 2050s (2051-2060) under two representative concentration pathway (RCP) scenarios (RCP4.5 and RCP8.5), and further determine the best agronomic management practices. The results showed that the calibrated and validated model is suitable for simulating soybean in the study area. By analyzing the meteorological data under future climate scenarios RCP4.5 and RCP8.5 from the PRECIS regional climate model, we found that the average temperature, cumulative precipitation and cumulative solar radiation would mostly increase during the growing season in Fujin city of Heilongjiang province. Combined with the model simulation results, it is shown that under the effect of CO2 fertilization, future climate change will have a positive impact on soybean yield. Compared to the baseline (1986-2005), the soybean yield would increase by 0.6% (7.4%), 3.3% (5.1%), 6.0% (16.8%) and 12.3% (20.6%) in the 2020s, 2030s, 2040s and 2050s under RCP4.5 (RCP8.5).Moreover, the optimal sowing dates and the optimal supplemental irrigation amount under RCP4.5 (RCP8.5) are May 10 (May 5) and 50 mm (40mm), respectively. Under future climate conditions, the agronomic management practices, such as advancing the sowing date and supplementary irrigation in the key stage of soybean growth would increase soybean yield and make soybean growth more adaptable to future climate change

    Mediator subunit MED31 is required for radial patterning of Arabidopsis roots

    Get PDF
    Stem cell specification in multicellular organisms relies on the precise spatiotemporal control of RNA polymerase II (Pol II)-dependent gene transcription, in which the evolutionarily conserved Mediator coactivator complex plays an essential role. In Arabidopsis thaliana, SHORTROOT (SHR) and SCARECROW (SCR) orchestrate a transcriptional program that determines the fate and asymmetrical divisions of stem cells generating the root ground tissue. The mechanism by which SHR/SCR relays context-specific regulatory signals to the Pol II general transcription machinery is unknown. Here, we report the role of Mediator in controlling the spatiotemporal transcriptional output of SHR/SCR during asymmetrical division of stem cells and ground tissue patterning. The Mediator subunit MED31 interacted with SCR but not SHR. Reduction of MED31 disrupted the spatiotemporal activation of CYCLIND6;1 (CYCD6;1), leading to defective asymmetrical division of stem cells generating ground tissue. MED31 was recruited to the promoter of CYCD6;1 in an SCR-dependent manner. MED31 was involved in the formation of a dynamic MED31/SCR/SHR ternary complex through the interface protein SCR. We demonstrate that the relative protein abundance of MED31 and SHR in different cell types regulates the dynamic formation of the ternary complex, which provides a tunable switch to strictly control the spatiotemporal transcriptional output. This study provides valuable clues to understand the mechanism by which master transcriptional regulators control organ patterning

    Differential regulation of clathrin and its adaptor proteins during membrane recruitment for endocytosis

    Get PDF
    In plants, clathrin-mediated endocytosis (CME) is dependent on the function of clathrin and its accessory heterooligomeric adaptor protein complexes, ADAPTOR PROTEIN2 (AP-2) and the TPLATE complex (TPC), and is negatively regulated by the hormones auxin and salicylic acid (SA). The details for how clathrin and its adaptor complexes are recruited to the plasma membrane (PM) to regulate CME, however, are poorly understood. We found that SA and the pharmacological CME inhibitor tyrphostin A23 reduce the membrane association of clathrin and AP-2, but not that of the TPC, whereas auxin solely affected clathrin membrane association, in Arabidopsis (Arabidopsis thaliana). Genetic and pharmacological experiments revealed that loss of AP2 mu or AP2 sigma partially affected the membrane association of other AP-2 subunits and that the AP-2 subunit AP2 sigma, but not AP2 mu, was required for SA-and tyrphostin A23-dependent inhibition of CME. Furthermore, we show that although AP-2 and the TPC are both required for the PM recruitment of clathrin in wild-type cells, the TPC is necessary for clathrin PM association in AP-2-deficient cells. These results indicate that developmental signals may differentially modulate the membrane recruitment of clathrin and its core accessory complexes to regulate the process of CME in plant cells

    Beta-Catenin Phosphorylated at Threonine 120 Antagonizes Generation of Active Beta-Catenin by Spatial Localization in trans-Golgi Network

    Get PDF
    The stability and subcellular localization of beta-catenin, a protein that plays a major role in cell adhesion and proliferation, is tightly regulated by multiple signaling pathways. While aberrant activation of beta-catenin signaling has been implicated in cancers, the biochemical identity of transcriptionally active beta-catenin (ABC), commonly known as unphosphorylated serine 37 (S37) and threonine 41 (T41) β-catenin, remains elusive. Our current study demonstrates that ABC transcriptional activity is influenced by phosphorylation of T120 by Protein Kinase D1 (PKD1). Whereas the nuclear β-catenin from PKD1-low prostate cancer cell line C4-2 is unphosphorylated S37/T41/T120 with high transcription activity, the nuclear β-catenin from PKD1-overexpressing C4-2 cells is highly phosphorylated at T120, S37 and T41 with low transcription activity, implying that accumulation of nuclear β-catenin alone cannot be simply used as a read-out for Wnt activation. In human normal prostate tissue, the phosphorylated T120 β-catenin is mainly localized to the trans-Golgi network (TGN, 22/30, 73%), and this pattern is significantly altered in prostate cancer (14/197, 7.1%), which is consistent with known down regulation of PKD1 in prostate cancer. These in vitro and in vivo data unveil a previously unrecognized post-translational modification of ABC through T120 phosphorylation by PKD1, which alters subcellular localization and transcriptional activity of β-catenin. Our results support the view that β-catenin signaling activity is regulated by spatial compartmentation and post-translational modifications and protein level of β-catenin alone is insufficient to count signaling activity

    Bi-Objective Workflow Scheduling on Heterogeneous Computing Systems Using a Memetic Algorithm

    No full text
    Due to the high power bills and the negative environmental impacts, workflow scheduling with energy consciousness has been an emerging need for modern heterogeneous computing systems. A number of approaches have been developed to find suboptimal schedules through heuristics by means of slack reclamation or trade-off functions. In this article, a memetic algorithm for energy-efficient workflow scheduling is proposed for a quality-guaranteed solution with high runtime efficiency. The basic idea is to retain the advantages of population-based, heuristic-based, and local search methods while avoiding their drawbacks. Specifically, the proposed algorithm incorporates an improved non-dominated sorting genetic algorithm (NSGA-II) to explore potential task priorities and allocates tasks to processors by an earliest finish time (EFT)-based heuristic to provide a time-efficient candidate. Then, a local search method integrated with a pruning technique is launched with a low possibility, to exploit the feasible region indicated by the candidate schedule. Experimental results on workflows from both randomly-generated and real-world applications suggest that the proposed algorithm achieves bi-objective optimization, improving makespan, and energy saving by 4.9% and 24.3%, respectively. Meanwhile, it has a low time complexity compared to the similar work HECS
    • …
    corecore