77 research outputs found

    Epigenome-Wide Histone Acetylation Changes in Peripheral Blood Mononuclear Cells in Patients with Type 2 Diabetes and Atherosclerotic Disease

    Get PDF
    There is emerging evidence of an association between epigenetic modifications, glycemic control and atherosclerosis risk. In this study, we mapped genome-wide epigenetic changes in patients with type 2 diabetes (T2D) and advanced atherosclerotic disease. We performed chromatin immunoprecipitation sequencing (ChIP-seq) using a histone 3 lysine 9 acetylation (H3K9ac) mark in peripheral blood mononuclear cells from patients with atherosclerosis with T2D (n = 8) or without T2D (ND, n = 10). We mapped epigenome changes and identified 23,394 and 13,133 peaks in ND and T2D individuals, respectively. Out of all the peaks, 753 domains near the transcription start site (TSS) were unique to T2D. We found that T2D in atherosclerosis leads to an H3K9ac increase in 118, and loss in 63 genomic regions. Furthermore, we discovered an association between the genomic locations of significant H3K9ac changes with genetic variants identified in previous T2D GWAS. The transcription factor 7-like 2 (TCF7L2) rs7903146, together with several human leukocyte antigen (HLA) variants, were among the domains with the most dramatic changes of H3K9ac enrichments. Pathway analysis revealed multiple activated pathways involved in immunity, including type 1 diabetes. Our results present novel evidence on the interaction between genetics and epigenetics, as well as epigenetic changes related to immunity in patients with T2D and advanced atherosclerotic disease.Peer reviewe

    Carbon benefits of wolfberry plantation on secondary saline land in Jingtai oasis, Gansu:A case study on application of the CBP model

    Get PDF
    The largest global source of anthropogenic CO2 emissions comes from the burning of fossil fuel and approximately 30% of total net emissions come from land use and land use change. Forestation and reforestation are regarded worldwide as effective options of sequestering carbon to mitigate climate change with relatively low costs compared with industrial greenhouse gas (GHG) emission reduction efforts. Cash trees with a steady augmentation in size are recognized as a multiple-beneficial solution to climate change in China. The reporting of C changes and GHG emissions for sustainable land management (SLM) practices such as afforestation is required for a variety of reasons, such as devising land management options and making policy. The Carbon Benefit Project (CBP) Simple Assessment Tool was employed to estimate changes in soil organic carbon (SOC) stocks and GHG emissions for wolfberry (Lycium barbarum L.) planting on secondary salinized land over a 10 year period (2004–2014) in the Jingtai oasis in Gansu with salinized barren land as baseline scenario. Results show that wolfberry plantation, an intensively managed ecosystem, served as a carbon sink with a large potential for climate change mitigation, a restorative practice for saline land and income stream generator for farmers in soil salinized regions in Gansu province. However, an increase in wolfberry production, driven by economic demands, would bring environmental pressures associated with the use of N fertilizer and irrigation. With an understanding of all of the components of an ecosystem and their interconnections using the Drivers-Pressures-State-Impact-Response (DPSIR) framework there comes a need for strategies to respond to them such as capacity building, judicious irrigation and institutional strengthening. Cost benefit analysis (CBA) suggests that wolfberry cultivation was economically profitable and socially beneficial and thus well-accepted locally in the context of carbon sequestration. This study has important implications for Gansu as it helps to understand the role cash trees can play in carbon emission reductions. Such information is necessary in devising management options for sustainable land management (SLM)

    A Novel Cold-Regulated Cold Shock Domain Containing Protein from Scallop Chlamys farreri with Nucleic Acid-Binding Activity

    Get PDF
    Background: The cold shock domain (CSD) containing proteins (CSDPs) are one group of the evolutionarily conserved nucleic acid-binding proteins widely distributed in bacteria, plants, animals, and involved in various cellular processes, including adaptation to low temperature, cellular growth, nutrient stress and stationary phase. Methodology: The cDNA of a novel CSDP was cloned from Zhikong scallop Chlamys farreri (designated as CfCSP) by expressed sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach. The full length cDNA of CfCSP was of 1735 bp containing a 927 bp open reading frame which encoded an N-terminal CSD with conserved nucleic acids binding motif and a C-terminal domain with four Arg-Gly-Gly (RGG) repeats. The CSD of CfCSP shared high homology with the CSDs from other CSDPs in vertebrate, invertebrate and bacteria. The mRNA transcripts of CfCSP were mainly detected in the tissue of adductor and also marginally detectable in gill, hepatopancreas, hemocytes, kidney, mantle and gonad of healthy scallop. The relative expression level of CfCSP was up-regulated significantly in adductor and hemocytes at 1 h and 24 h respectively after low temperature treatment (P,0.05). The recombinant CfCSP protein (rCfCSP) could bind ssDNA and in vitro transcribed mRNA, but it could not bind dsDNA. BX04, a cold sensitive Escherichia coli CSP quadruple-deletion mutant, was used to examine the cold adaptation ability of CfCSP. After incubation at 17uC for 120 h, the strain of BX04 containing the vector pINIII showed growth defect and failed to form colonies, while strain containing pINIII-CSPA or pINIII

    Energy Consumption, Carbon Emissions and Global Warming Potential of Wolfberry Production in Jingtai Oasis, Gansu Province, China

    Get PDF
    During the last decade, China's agro-food production has increased rapidly and been accompanied by the challenge of increasing greenhouse gas (GHG) emissions and other environmental pollutants from fertilizers, pesticides, and intensive energy use. Understanding the energy use and environmental impacts of crop production will help identify environmentally damaging hotspots of agro-production, allowing environmental impacts to be assessed and crop management strategies optimized. Conventional farming has been widely employed in wolfberry (Lycium barbarum) cultivation in China, which is an important cash tree crop not only for the rural economy but also from an ecological standpoint. Energy use and global warming potential (GWP) were investigated in a wolfberry production system in the Yellow River irrigated Jingtai region of Gansu. In total, 52 household farms were randomly selected to conduct the investigation using questionnaires. Total energy input and output were 321,800.73 and 166,888.80 MJ haβˆ’1, respectively, in the production system. The highest share of energy inputs was found to be electricity consumption for lifting irrigation water, accounting for 68.52%, followed by chemical fertilizer application (11.37%). Energy use efficiency was 0.52 when considering both fruit and pruned wood. Nonrenewable energy use (88.52%) was far larger than the renewable energy input. The share of GWP of different inputs were 64.52% electricity, 27.72% nitrogen (N) fertilizer, 5.07% phosphate, 2.32% diesel, and 0.37% potassium, respectively. The highest share was related to electricity consumption for irrigation, followed by N fertilizer use. Total GWP in the wolfberry planting system was 26,018.64 kg CO2 eq haβˆ’1 and the share of CO2, N2O, and CH4 were 99.47%, 0.48%, and negligible respectively with CO2 being dominant. Pathways for reducing energy use and GHG emission mitigation include: conversion to low carbon farming to establish a sustainable and cleaner production system with options of raising water use efficiency by adopting a seasonal gradient water pricing system and advanced irrigation techniques; reducing synthetic fertilizer use; and policy support: smallholder farmland transfer (concentration) for scale production, credit (small- and low-interest credit) and tax breaks

    A novel model for protein sequence similarity analysis based on spectral radius

    No full text
    Advances in sequencing technologies led to rapid increase in the number and diversity of biological sequences, which facilitated development in the sequence research. In this paper, we present a new method for analyzing protein sequence similarity. We calculated the spectral radii of 20 amino acids (AAs) and put forward a novel 2-D graphical representation of protein sequences. To characterize protein sequences numerically, three groups of features were extracted and related to statistical, dynamics measurements and fluctuation complexity of the sequences. With the obtained feature vector, two models utilizing Gaussian Kernel similarity and Cosine similarity were built to measure the similarity between sequences. We applied our method to analyze the similarities/dissimilarities of four data sets. Both proposed models received consistent results with improvements when compared to that obtained by the ClustalW analysis. The novel approach we present in this study may therefore benefit protein research in medical and scientific fields

    PTPD : Predicting therapeutic peptides by deep learning and word2vec

    No full text
    Background In the search for therapeutic peptides for disease treatments, many efforts have been made to identify various functional peptides from large numbers of peptide sequence databases. In this paper, we propose an effective computational model that uses deep learning and word2vec to predict therapeutic peptides (PTPD).βˆ—: Results Representation vectors of all k-mers were obtained through word2vec based on k-mer co-existence information. The original peptide sequences were then divided into k-mers using the windowing method. The peptide sequences were mapped to the input layer by the embedding vector obtained by word2vec. Three types of filters in the convolutional layers, as well as dropout and max-pooling operations, were applied to construct feature maps. These feature maps were concatenated into a fully connected dense layer, and rectified linear units (ReLU) and dropout operations were included to avoid over-fitting of PTPD. The classification probabilities were generated by a sigmoid function. PTPD was then validated using two datasets: an independent anticancer peptide dataset and a virulent protein dataset, on which it achieved accuracies of 96% and 94%, respectively.βˆ—: Conclusions PTPD identified novel therapeutic peptides efficiently, and it is suitable for application as a useful tool in therapeutic peptide design

    A novel dual-pooling attention module for UAV vehicle re-identification

    No full text
    Abstract Vehicle re-identification (Re-ID) involves identifying the same vehicle captured by other cameras, given a vehicle image. It plays a crucial role in the development of safe cities and smart cities. With the rapid growth and implementation of unmanned aerial vehicles (UAVs) technology, vehicle Re-ID in UAV aerial photography scenes has garnered significant attention from researchers. However, due to the high altitude of UAVs, the shooting angle of vehicle images sometimes approximates vertical, resulting in fewer local features for Re-ID. Therefore, this paper proposes a novel dual-pooling attention (DpA) module, which achieves the extraction and enhancement of locally important information about vehicles from both channel and spatial dimensions by constructing two branches of channel-pooling attention (CpA) and spatial-pooling attention (SpA), and employing multiple pooling operations to enhance the attention to fine-grained information of vehicles. Specifically, the CpA module operates between the channels of the feature map and splices features by combining four pooling operations so that vehicle regions containing discriminative information are given greater attention. The SpA module uses the same pooling operations strategy to identify discriminative representations and merge vehicle features in image regions in a weighted manner. The feature information of both dimensions is finally fused and trained jointly using label smoothing cross-entropy loss and hard mining triplet loss, thus solving the problem of missing detail information due to the high height of UAV shots. The proposed method’s effectiveness is demonstrated through extensive experiments on the UAV-based vehicle datasets VeRi-UAV and VRU

    The immunomodulation of acetylcholinesterase in zhikong scallop Chlamys farreri.

    Get PDF
    BACKGROUND: Acetycholinesterase (AChE; EC 3.1.1.7) is an essential hydrolytic enzyme in the cholinergic nervous system, which plays an important role during immunomodulation in vertebrates. Though AChEs have been identified in most invertebrates, the knowledge about immunomodulation function of AChE is still quite meagre in invertebrates. METHODOLOGY: A scallop AChE gene was identified from Chlamys farreri (designed as CfAChE), and its open reading frame encoded a polypeptide of 522 amino acids. A signal peptide, an active site triad, the choline binding site and the peripheral anionic sites (PAS) were identified in CfAChE. The recombinant mature polypeptide of CfAChE (rCfAChE) was expressed in Pichia pastoris GS115, and its activity was 71.3Β±1.3 U mg(-1) to catalyze the hydrolysis of acetylthiocholine iodide. The mRNA transcripts of CfAChE were detected in haemocytes, hepatopancreas, adductor muscle, mantle, gill, kidney and gonad, with the highest expression level in hepatopancreas. The relative expression level of CfAChE mRNA in haemocytes was both up-regulated after LPS (0.5 mg mL(-1)) and human TNF-Ξ± (50 ng mL(-1)) stimulations, and it reached the highest level at 12 h (10.4-fold, P<0.05) and 1 h (3.2-fold, P<0.05), respectively. After Dichlorvos (DDVP) (50 mg L(-1)) stimulation, the CfAChE activity in the supernatant of haemolymph decreased significantly from 0.16 U mg(-1) at 0 h to 0.03 U mg(-1) at 3 h, while the expression level of lysozyme in the haemocytes was up-regulated and reached the highest level at 6 h, which was 3.0-fold (P<0.05) of that in the blank group. CONCLUSIONS: The results collectively indicated that CfAChE had the acetylcholine-hydrolyzing activity, which was in line with the potential roles of AChE in the neuroimmune system of vertebrates which may help to re-balance the immune system after immune response
    • …
    corecore