7,649 research outputs found

    Fermi Surface Nesting and Nanoscale Fluctuating Charge/Orbital Ordering in Colossal Magnetoresistive Oxides

    Full text link
    We used high resolution angle-resolved photoemission spectroscopy to reveal the Fermi surface and key transport parameters of the metallic state of the layered Colossal Magnetoresistive (CMR) oxide La1.2Sr1.8Mn2O7. With these parameters the calculated in-plane conductivity is nearly one order of magnitude larger than the measured DC conductivity. This discrepancy can be accounted for by including the pseudogap which removes at least 90% of the spectral weight at the Fermi energy. Key to the pseudogap and many other properties are the parallel straight Fermi surface sections which are highly susceptible to nesting instabilities. These nesting instabilities produce nanoscale fluctuating charge/orbital modulations which cooperate with Jahn-Teller distortions and compete with the electron itinerancy favored by double exchange

    Numerical methods for analyzing electromagnetic scattering

    Get PDF
    Numerical methods to analyze electromagnetic scattering are presented. The dispersions and attenuations of the normal modes in a circular waveguide coated with lossy material were completely analyzed. The radar cross section (RCS) from a circular waveguide coated with lossy material was calculated. The following is observed: (1) the interior irradiation contributes to the RCS much more than does the rim diffraction; (2) at low frequency, the RCS from the circular waveguide terminated by a perfect electric conductor (PEC) can be reduced more than 13 dB down with a coating thickness less than 1% of the radius using the best lossy material available in a 6 radius-long cylinder; (3) at high frequency, a modal separation between the highly attenuated and the lowly attenuated modes is evident if the coating material is too lossy, however, a large RCS reduction can be achieved for a small incident angle with a thin layer of coating. It is found that the waveguide coated with a lossy magnetic material can be used as a substitute for a corrugated waveguide to produce a circularly polarized radiation yield

    Numerical methods for analyzing electromagnetic scattering

    Get PDF
    Attenuation properties of the normal modes in an overmoded waveguide coated with a lossy material were analyzed. It is found that the low-order modes, can be significantly attenuated even with a thin layer of coating if the coating material is not too lossy. A thinner layer of coating is required for large attenuation of the low-order modes if the coating material is magnetic rather than dielectric. The Radar Cross Section (RCS) from an uncoated circular guide terminated by a perfect electric conductor was calculated and compared with available experimental data. It is confirmed that the interior irradiation contributes to the RCS. The equivalent-current method based on the geometrical theory of diffraction (GTD) was chosen for the calculation of the contribution from the rim diffraction. The RCS reduction from a coated circular guide terminated by a PEC are planned schemes for the experiments are included. The waveguide coated with a lossy magnetic material is suggested as a substitute for the corrugated waveguide

    Wave attenuation and mode dispersion in a waveguide coated with lossy dielectric material

    Get PDF
    The modal attenuation constants in a cylindrical waveguide coated with a lossy dielectric material are studied as functions of frequency, dielectric constant, and thickness of the dielectric layer. A dielectric material best suited for a large attenuation is suggested. Using Kirchhoff's approximation, the field attenuation in a coated waveguide which is illuminated by a normally incident plane wave is also studied. For a circular guide which has a diameter of two wavelengths and is coated with a thin lossy dielectric layer (omega sub r = 9.1 - j2.3, thickness = 3% of the radius), a 3 dB attenuation is achieved within 16 diameters

    THE RESPONSE OF WHOLE BODY VIBRATION ON TAI CHI AND WEIGHT-LIFTING ATHLETES

    Get PDF
    Whole body vibration (WBV) is a new technique which may improve leg muscle strength. Many researchers have studied the effect of whole body vibration recently. But study of effects of vibration stimulus to different activity type athletes, such as Tai Chi (N=12) and Weight-lifting (N=15) athletes is lacking. In this study we examine that question. The subjects were asked to stand in a half-squat posture without additional load on a vibration platform with 7 vibration frequencies (5, 9, 12, 16, 20, 24, 30 Hz) at 4 mm amplitude and maintained for 30 seconds. The effect of WBV would be different on different sport subjects’ perceived exertion. We discovered that the subject’s perception may be related with the acceleration of the subject’s head. Using whole body vibration training to improve muscle power and strength depends on the particular sport’s training emphasis to setup the appropriate training protocol such as amplitude and frequency

    Cryogenic-coolant He4-superconductor dynamic and static interactions

    Get PDF
    A composite superconducting material (NbTi-Cu) was evaluated with emphasis on post quench solid cooling interaction regimes. The quasi-steady runs confirm the existence of a thermodynamic limiting thickness for insulating coatings. Two distinctly different post quench regimes of coated composites are shown to relate to the limiting thickness. Only one regime,, from quench onset to the peak value, revealed favorable coolant states, in particular in He2. Transient recovery shows favorable recovery times from this post quench regime (not drastically different from bare conductors) for both single coated specimens and a coated conductor bundle

    Quantum Bit Regeneration

    Get PDF
    Decoherence and loss will limit the practicality of quantum cryptography and computing unless successful error correction techniques are developed. To this end, we have discovered a new scheme for perfectly detecting and rejecting the error caused by loss (amplitude damping to a reservoir at T=0), based on using a dual-rail representation of a quantum bit. This is possible because (1) balanced loss does not perform a ``which-path'' measurement in an interferometer, and (2) balanced quantum nondemolition measurement of the ``total'' photon number can be used to detect loss-induced quantum jumps without disturbing the quantum coherence essential to the quantum bit. Our results are immediately applicable to optical quantum computers using single photonics devices.Comment: 4 pages, postscript only, figures available at http://feynman.stanford.edu/qcom
    • …
    corecore