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ARSTRACT

The modal attenuation constants in a cylindrical waveguide coated with a
lossy dielectric material are studied as functions of frequency, dielectric
constant, and thickness of the dielectric layer. A dielectric material best
suited for a large attenuation is suggested. Using Kirchhoff's approximation,
we also studied the field attenuation in a coated waveguide, which is 1llumi-
nated by a normally incident plane wave. For a circular gulde which has a
diameter of 2 wavelengths and is coated with a thin lossy dielectric layer
(er = 9.1 - j2.3, thickness = 3% of the radius), a 3 dB attenuation is achieved

within 16 diameters. .
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1. INTRODUCTION

Reducing the radar cross section (RCS) is one of the major problems in
designing a modern military aircraft. When an airplane is heading toward the
radar site, a major contribution to RCS comes from the jet engine intake. The
RCS from the jet intake is mainly due to the rim diffraction and interior irra-
diation. The rim diffraction has been studied by several authors [1], [2].

The main goal of our research is to reduce, as much as possible, the
intarior irradiation from the jet intake. One way to achieve this goal is to
coat the interior wall of the jet intake with a lossy dielectric material. Once
the wave 1s transmitted from the outside illumination, the wave will attenuate
as it propagates through the interior of the jet intake before it scatters back
to the outside of the jet intake.

For our theoretical model, we approximate the jet intake by a cylindrical
waveguide. We will investigate the properties of the wave attenuation in a
cylindrical waveguide coated with a lossy dielectric material and suggest how
the power attenuation of the transmitted wave to the waveguide from the outside
illumination can be maximized.

This report begins with the derivation of the normal modes in the lossy
waveguide. It is followed by the general discussion of the behavior of
the attenuation constant as functions of the frequency, the dielectric constant
and the layer thickness of the dielectric material. A few specific materials
are chosen to show how the wave attenuates within the waveguide from the nor-
mally incident plane wave. In the conclusion and discussion section, other

possible devices for a large power attenuation of the wave are suggested.



2. FORMULATION

Consider a cylindrical waveguide coated with a lossy material as shown in
Figure 1, We assume that region I is free space and the permeability of region
IT is the same as that in free space. it the past, a number of authors treated
the problem of the partially filled waveguide [3], [4]. Ia this report, we
rederive the formulation to make this report self-sufficient and uniform in
notation for otheF derivations presented later.

2.1. Propagation Constant

2.1.1. Approximate solution !

Though the perturbation theory does not give a very accurate result for the
waveguide perturbed by a very lossy material, this analytic result provides
guidance in the exact numerical calculation.

The difference between the propagation constants of the perturbed and

unperturbed waveguides is given by (ejwt convention)[5]

o fg (i, - acd) ds
k. -k

= , - (2.1)
K 20 fS (§6 xH - E x ﬁ;)-z ds

Here B(H) and E;(ﬁ;) are the fields of the perturbed and unperturbed waveguides,
respectively, w is the angular frequency, and Ap and Ae are the differences of
the permeabilities and permittivities between the perturbed and unperturbed
cases, respectively. The integration is over the cross-sectional area of the
waveguide. In this report, we assume that Ap = 0 and Ae = (sr - 1)60 where

€ is the free-space permittivity and € is the dielectric constant of the lossy

dielectric.




In the cylindrically symmetric geometry, mode coupling is largest between
the TE and TM modes with the same mode indices, e.g., TELL and Ty Though the
normal mode in this case 1s no longer TE or TM, it is closer to one of the two
modes when the thickness of the dielectric layer is small. We call this mode
"quasi"” TE or TM mode and will use the same notation as in the unperturbed
waveguide for convenience. Some authors prefer to use Il and EH instead of TE
and TM, respectively[4],

Using the static approximation, we obtain (Appendix 1)

E a
2 ,
" WH, el e 1) | - fm( nbm ) ¢ (2.2
2z~ Kgo ™ Zek, (;; )2 - ' or TEmn(HEmn) -2)
n 2
2 Jm( Emn>
E a
k(e - 1) £ (=)
z0' T m' b
kz - kZO '——Te—r———' 1 E‘i v for Tan(EHmn) (2-3)
oo JZ (£ )
2 Jmt1 (Bun

]
Here U, is the free-space permeability; Emn and Emn are the nth zeros of the
1

Bessel function of order m, J_ and its derivative Jm, respectively; kpo is the

m

radial wave vector for the unperturbed case; and

2
E(x) =g (12,0 = 303, (0] + wilx) (2.4)

2.1.2. Exact solution

The characteristic equation for the propagation constant of the normal mode
in a lossy hollow cylinder can be derived by imposing the boundary condition on
the perfectly conducting surface and matching the fields between regions I and
11 (Figure !). The characteristic equation to be solved numerically for the

propagation constant kz is given by (Appendix 2)
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Figure 1. A cylindrical waveguide coated with a dielectric material
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where
2 2 2 _.2 vl
kp1 +k, = wey =k R (2.6)
2 2 2 o 2
Fy o= dp(k,a) (2.8)
Fou Jm(kpza) Nm(kpzb) - Nm(kpza) Jm(kpzb) (2.9)
' ] ]
Fy= Jm(kpza) Nm(kpzb) - Nm(kpza) Jm(kpzb) (2.10)
[} ]
F, = Jm(kpza) Nm(kpzb) - Nm(k.pza) Jm(kpzb) (2.11)
? ' ] 1 1]
F, = Jm(kpza) Nm(kpzb) - Nm(kpza) Jm(kpzb) (2.12)

Bisre Ei and €, are the permittivities; Hy and My the permeabilities; kpl and
kpZ' the radial wave vectors of regions I and II, respectively; and a and b are
the radii of the air region and the conducting cylinder, respectively. Jm is
the Bessel function and Nm is the Neumann function of order m.

2.2. Fields of the Normal Modes in a Lossy Waveguilde

Once we find the eigenvalues for the propagation constants, the eigenvec-
tors for the fields in the lossy waveguide naturally follow. The electric and
magnetic fields are given by (Appendix 2)

Ak _k -
I z pl ! _ Bm jk,z
Jm(kplp) 7;'Jm(kp1°) cos mé e (2.13a)

p
we,

e A
o i



pu
{

=

4

1r_ | Skkp
Wez

(00 29 Bl ) = Na(k 0) T (k b }

- 2 {Jm(kpzp) N;(kpzb) = Ny(k50) J;(kpzb)}] cos m¢ e-jkzz

1 [Megn ' -ik_z
o | rmem—— R 2
Ey 5, B Jm(kplp) + Bk ) Jm<kplp) gin n¢ e
I erzm
£yl 2T {9k 20) Ny(ke pb) = N (k ) Ipl o) }

b

' ' ! ) ' -jkzz
+ Dk p {T(k o 0) Nyl pb) = Ny(k 50) Jp(k b)) sin mp e

2
Ak~ -5k
I_"pl o Ik, z
E, ?TGE; Jm(kplp) cos ¢ e
Ck2 ik
IT_ 92 - TIk,2
E, EIE; [Jm(kpzp) Ny(k 5b) Nm(kpzp) Jm(kpzb)] cos m¢ e
-
Bk _k -1
I _ Am __zpl o1 jk,z
Hp [T Jm<kpl p) wul Jm(kpl p)} sin m¢ e
IT Cm
Hot= =2 {0k p0) Nptk pb) - Nyl p0) 3 (k 5b) ]
Dk,koa (.1 : ! :
oy {Jm(kpzp) Np(k pb) = By (k ) Jm(kpzb)} sin m¢ e
Bk _m -jk_z
L. |- ' -2 z
H¢ = [:Akpl Jm(kplp) W, Jm(kplp)} cos mp e

-jk_z

(2.13b)

(2;148)

(2.14b)

(2.15a)

(2.15b)

(2.16a)

(2.16b)

(2.17a)
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) Dkzm t , , ~f 2
Wi, p mik g20) Np(k 5b) = Ny (k 5p) Jm(kpzb)} cos m¢$ e (2.17b)

Bkz ik
I_ ol . =ik 2
H, Tou- i, Jm(kpzp) sin m¢ e (2.18a)
2
Dk -
II, "p2 ' _ ' jk,z
H, To, [Jm(kpzp) Ny(k pb) = Ny(k 50) Jm(kpzb)] gik m¢ e (2.18b)

Here the superscipts I and Il indicate regions I and II (Figure 1), and
subscripts p, ¢ and z indicate the radial, angular and propagation-directional
components of the fields, respectively. A, B, C and D are the constants, which
are determined by the boundary conditions and the normalization condition.

Those constants are related by

2
k. F
T el ) (2.19)
k2 F3 g
p2
2
k. F, u
D = B._Z&!._F.}._?. (2.20)
k. F4 M
p2
1]
el & FaFy k)
F [ —
pl]"1 g Fy kp2
B __ <1 for T™(EH), m # O (2.21a)
A N 2
m k
Z | - —£b
wau1 2 k2
02

T ML TR



%. - > <1 for TE(HE), m # 0 (2.21b)
k m k
Z F. |l - ol
wae "1 12
1 K
p2

There is no mcde coupling between the TE and TM modes for m = O, We note that
there are two degenerate uwodes for each angular mode index m except when m = O,
In the expressions of the fields, we have arbitrarily chosen une of those

two modes., . !

2.3. Wave Propagation into a Cylindrical Waveguide from the Incident Plane Wave

Consider a plane wave incident on the opening of a cylindrical waveguide
(Figure 2). An exact solution for thke cylindrical waveguide without the
dielectric coating has been derived by Weinstein [6] using the Wiener-Hopf
Method. GTD has been applied by several authors [2], [7]. When the waveguide
is coated with lossy material, the problem is much more complicated. Since we
emphasize the wave attenuation within the waveguidé, we use Kirchhoff's approxi-
mation. This method provides an approximate solution and is much simpler than
the GID or Wiener-Hopf Method.

We assume in the following derivation that the perturbation within the
waveguide is weak enough so that the modal fields in the perturbed waveguide can

be approximated by the modal fields in the unperturbed waveguide.

For the incident fields, we write (Figure 2)

>in _ o - -3
E Eo(x cos 6, = z sin 60) exp| J(kxx + kzz)] (2.22)
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E .
fin = 2-.-3 y exp[=j(k x + k,z)] (2.23)

where 90 is the incident angle, k.x and kz are the components of the wave vector,
Eo is a constant, and Zo is the free-space impedance m. Note that we
choose the coordinate for the incideni: field ir. order to simplify the for-
mulation. When the tangential E field at the opening of the waveguide is

matched, the trarsmitted transverse flelds at z = 0 are given by (Appendix 3)

k,
_ oty H 2mn
Ec(z = 07) ) Cmnﬁr‘:n * Eﬁn \72“ (2.24)
m,n ()
H ty = 1 kz“"“(‘“(“w<ﬁ'ﬂ)+"c'u(:~<\7‘H) (2.25)
elz =0 Z_ k. ‘mn*? * “mn mn“ " Ymn y
o m,n o
where

v ! : ' v
[ '““L N, o d [ﬁ p”sm . S (2.26)
[ff‘J mm) T e m{ b | ~cos m¢ b o b sin m¢
| mn

\-I*V & sin m¢ & -cos m¢ ]

ol p o +og I e (2.27)
v ma b om cos m¢ e m sin m¢ J

mn

E
H _ o 2mm ,_. o1 !
Con = _—Z'; cos 6 Nmnf;{_"( i) I8 L) Ipk,b) (2.28)
10
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mn Z o Nmn me( Emn) Jm(kxb) (2.29)
o] g 2
2 mn
ke - | 2
b4 b

Here ko is the free-space wave number wiE;E;, and U and ¥ indicate the nor-
malized TE and TM fields, respectively. The superscripts V and H indicate the
vertical and horizontal polarizations, respectively. The symbols with an over
bar indicate TM modes and these without an over bar, TE modes. Nmn and'ﬁ;n are
the normalization constants (Appendix 3).

Vhen we match the tangential magnetic field, the expressions for the
transmitted transverse fields at z = 0 are similar to the above expressions
except for the cos 60 .erms in Eqs. (2.28) and (2.29) and the factor of
kzmn/ko (Appendix 3). In this report, we use the electric-field matching.

In order to characterize the power attenuation of the transmitted wave, we
approximate the modal fields in the lossy waveguide by the modal fields in the
perfect waveguide with the exception of the z-dependence of the propagation
constant, which characterizes the wave attenuation. Then the power propagating

within the lossy waveguide from a ncrmally incident plane wawve is approximately

given by (Appendix 3)

(Bln/ko) exp[-ZQﬁnz]

(g% -1

P(z) _ .,
P = 2]
o] n

(2.30)

11



where

k'zln = Bjp ~ Jo, (2.31)

Here Po is the power incident on the area of the opening of the waveguide and

Bln and a, are the real and imaginary parts of the propagation constant,
respectively.

We note in Eq. (2.30) that the higher mode usually carries less power

1)
because the higher mode has a smaller Bln but a larger Eln'

12

o g A



3. NUMERICAL RESULTS
Numerical results are given for the dominant TE11 and ™ modes for the
purpose of comparison. The cutoff frequencies of lower—order modes in terms of
the cutoff frequency of the dominant mode are shown in Figure 3. The mode pat-
terns of 30 lowest modes are shown in Figures 4 and 5.

3.1. Mode Attenuation and Dispersion

3.1.1. Frequency dependence

Figures 6 and 7 show the real and imaginary parts of the propagation
constants of the TE11 and TMll modes as a function of frequency in a waveguide
coated with a thin dielectric material. In Figure 6, the exact numerical solu-
tions for the attenuation constants are compared with the results obtained from
the perturbation theory (Section 2.1.1). We can see that the perturbation
theory is valid only at the low-irequency region even though the thickness of
the dielectric layer is small. At the high-frequency region, the TE11 mode
shows much higiar attenuation than the TM11 mode. This 1s due to the fact that

the TE,, modal field moves closer to the surface of the waveguide than the

11

TM11 mode as frequency increases. These features are shown in Figures 8 and 9,
where the magnitudes of the angular and radial electric fields are plotted as a
function of radial distance. Note that the fields of both TE11 and ™, , modes

at the low frequency (3 GHz) are similar to those for the unperturbed case, but

the modal fields of the TE,, mode (Figure 8) are closer to the surface than

11

those of the TM,, mode (Figure 9) at the high frequency (7 GHz). On the other

11
hand, the real part of the prupagation constant is not much different from that
for the unperturbed case (Figure 6).

3.1.2. Dielectric constant dependence - thin layer

Figures 10 and 1l show the attenuation constants as a function of the

complex dielectric constant €. of the lossy dielectric material. We observe two

13
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interesting features in these graphs. First, there is a clear "resonance"
effect of the imaginary part ei of €. on the attenuation constant when the real
part of e& of € is small (¢ 1.5). Second, a smaller e§ gives a larger atten-—
uation constant except for that with a "dielectric resonance.” Since the e§

of the practical materials are usually larger than 1.5, we need to choose the
lossy dielectric material with a large loss tangent (small é% but large ei) for
a large power attenuation in the waveguide.

Note that the general dependence of the attenuation constant on the
dielectric constant for both TE11 and ’I‘Ml1 are very similar, and these proper-
ties may not be limited to those two particular modes. To understand these
results, consider the following. The attenuation constant is proportional to
the power dissipation within the lossy dielectric layer. The power dissipation

per unit length P, is related by

d

W g I 2
Py =3 | |ex ] 1E]° as
a 2 e~layer r

where the integration 1s over the dielectric region. Then the attenuation

constant 1s given by

I 2
v fe-layer ErHﬁl ds (3.1)

2 [ & x if*ez ds

Imk_ =
z

where the integration in the denominator is over the cross~sectional area.
Hence for a large attenuation coustant, we need a large eﬁ and large field con~
centration within the dielectric layer. These properties can be illustrated
from the field distributions within the waveguide (Figures 12 and 13). The
tangential electric fields are usually small in the dielectric region with a

thin dielectric layer becauws the tangential electric fields vanish on a
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perfectly conducting surface. These features are shown in Figures 12 and 13 as
well as the field expressions in Section 2.1.2, The ratios of the tangential

fields to the radial fields are approximately given by

2= u/b (3.2)
P

Ez kzzr

= = e for TM(EH) (3.3)

k

p z

-Ei 2k b~ for TE(HE), m # 0 (3.4)
0 p2° b

Since kpzr and t/b are small for a thin dielectric layer, these ratios are
usually small., Thus Ep is responsible for most of the power loss. Since

Ep at the dielectric region is inversely proportional to |er‘ (see eq. (Al.7)),
increasing eﬁ decreases the electric-field strength within the dielectric layer
(Figures 12 and 13). Since the power loss is also proportional to |é§], there
may exist an optimum value of ei for a maximum power loss and a maximum atten~-
uation constant (Figures 12b and 13b).

We expect the attenuation constant to become vanishingly small as ei becomes
very large, because the dielectric layer becomes a perfect conductor in this
limit., These features are shown in Figures 14 and 15, where the attenuation
constants in the asymptotic limit of ei are plotted as a function of ei. Note

that the attenuation constants decay rather slowly as eﬁ becomes very large.
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3.1.3. Dielectric-thickness dependence

When the dielectric layer is thick. the behavior of the propagation
constant 1s different from that in the case of the thin dielectric layer. These
features are shown in Figures 16, 17, 18, and 19, We observe a few interesting
points in these figures,

First, there may exist a "spatial"-resorance effect as the layer
thickness increases. That 1s, there may exist an optimum layer thickness for a
large attenuation constant. As shown in Figure 20, the optimum ‘thickness
results when the thickness of the dielectric layer is about 1/4 of the wave-
length within the dielectric layer. This is contrary to the common belief that
the thicker the lossy layer is, the larger the attenuation constant becomes. It
is interesting to note that when the resonance is weak (e.g., TE with a small
ei), the field is similar to the field of a surface mode confined to the
dielectric region near the surface. This feature is shown in Figure 2la, where
the ratios of the magnitudes of the electric fields to those at the center of
the waveguide are plotted as a function of the radial distance.

Second, when we keep the ratio of ei to e&

(i.e., the loss tangent)
constant, the basic dependence of the attenuation constant on the dielectric-
layer thickness remains similar. Generally, a thicker layer attenuates the TE
mode more significantly than the TM mode,

Third, as eﬁ increases, the attenuation constant of the TMli mode
increases, but the attenuation constant of the 'I‘E11 mode decreases. This can be
understood from the field distributions as shown in Figures 21 and 22. Note
that when ei increases, the electric field of the TEll mode at the dielectric

region decreases significantly while the electric field of the TM11 mode remains

relatively unchanged. Since the attenuation constant is also proportional
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I
to €, (Equation (3.1)), the attenuation constant of the TM,, mode increases
while the attenuation constant of the TEll mode decreases as the e: of the lossy
dielectric increases.

3.2. Wave Attenuation ia the Lossy Waveguide from a Normally Incident
Plane Wave

As shown in Section 3.1.2, the lossy dielectric with a large loss tangent
is a good choice for the coating material for a large wave attenuation within
the waveguide. Plastics are in this category [8]; three materials are chosen
for further analysis (Table‘l). Figures 23, 24 and 25 show the power attenu-
ations of the transmitted waves from the normally incident plane wave with a
unit power om the aperture. Only two modes (TE11 and TEIZ) are propagatihg in
this particular geometry (Figures 2 and 3) and 84% of the incident power on the
aperture is transmitted in this approximation. There are two interesting
features to be observed. Most of the power is carried by the dominant mode
(TEll)(which has been discussed in Section 2.3) and the attenuation constant of
the dominant mode is usually larger than that of the higher mode. As those two
modes propagate through the waveguide, eventually the higher mode will carry
most of the power, but when this happens, the total power of the wave has

already decayed to a small fraction of the initial transmitted power at z = O,
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TABLE 1.

THE DIELECTRIC CONSTANTS OF THE LOSSY DIELECTRIC MATERIALS AND THE PROPAGATION
CONSTANTS OF TE|| AND TE;, MODES WHEN THESE MATERIALS ARE USED IN THE WAVEGUIDE

(a=9.7 cm, b =10 cm, £ = 3 GHz (b/A = 1))

Figure 23 24 3]
Material Polystyrene 7% Catalin Pyralin
700 base
*Real €, 9.1 4,74 3.74
*Imag €. -2.275 -0.7252 -0.6171
Real k_xb 6.1321 6.1059 6.0960
TE
11
Imag k_xb -1.0388x10"2 -6.1856 X103 ~7.2436 %107
TE, 2
11
Real ksz 3.3726 3.3554 3.3513
TE, 5
Inag k_xb ~9.2734x103 -2.9211x1073 ~2.6319 %1073
TE,,

*Reference (8)
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4, CONCLUSION AND DISCUSSION

We have calculated the attenuation constants of the normal modes in the
waveguide coated with a lossy dielectric material. When the lossy-dielectric
layer is thin, choosing the dielectric material with a large loss tangent
results in a large attenuation constant of the normal mode (TE or TM). We have
chosen a few practical materials for the lossy dielectric to demonstrate the
power attenuation of the wave in the lossy waveguide from the normally incident
plane wave. Unfortunately, the power attenuation may not be sufficient in a
practical application. For a circular waveguide coated with the thin layer
((b - a)/b = 3%) of the best dielectric material available (polystyrene 70% and
carbon 30%, €. = 9.1 - j2.3), a 3 dB attenuation can be achieved around a
distance of 16 diameters,

We have also calculated the attenuation constant as a function of the
thickness of the lossy dieclectric layer. There may exist an optimum thickness
of the lossy dielectric layer for large attenuation, and the behavior of the
attenuation constants of the TE and TM modes as a function of the dielectric
constant of the lossy material are different from that in the thin-layer case.
That is, choosing the lossy material with a smaller ei results in a larger
attenuation constant for the TE mode but a smaller attenuation constant for the
TM mode, or vice versa. Usually, TE modes attenuate more than TM modes in the
thicker layer case.

The main reason we can not obtain a large attenuation constant in the wave-
guide coated with a thin lossy dielectric layer is that the electric field 12}
is small because its tangential component vanishes at the perfectly conducting
surface and its normal component is inversely proportional to the dielectric

constant, which is usually large for the available materials. A thick lossy
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dielectric layer may be used for a large attenuation constant of the normal
mode. For example, when the waveguide is coated with the thick dielectric layer
((b - a)/b = 10%) of Catalin (700 base, €. = 4.7 - 30.7), a 3 dB attenuation can
be obtained within a distance of one diameter. However, too thick a layer may
not be desirable in the design of the structure.

It may be possible to attain a large attenuation constant of the normal
mode even with a thin dielectric layer but with a different pattern of coating.
Consider a waveguide which is coated with double layers (Figure 26a)., If we use
the dielectric with a large dielectric constant for the outer layer, then the
modal field will shift to the surface, and the electric field in the inner
dielectric layer with a large ei will be large, where the power of the wave is
dissipated. We have seen in Section 3.l1.2 that the tangential field does not
contribute much to the power dissipation in the case of a single thin dielectric
layer. Increasing the tangential component of the electric field with a multi-
layer coating makes this component play a major role in the power dissipation of
the guided wave. The aboye effect with the multilayer can be achieved with
commercially available resistive sheets (Figure 26b).

Ancther way by wiich the electric field in the dielectric region can be
increased may be using the corrugated layers (Figure 27a). The basic idea in
this device 1s tc increase the radial component of the electric field in the
dielectric region by making space within the dielectric layer.

Since the electric field at the center region is usually large, it has been
suggested that putting the lossy material (e.g., resistive cards) at the center
region may increase the attenuation constant (Figure 27b).

The feasibility of those devices mentioned above also depends on the actual

design problem of the jet intake.
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APPENDIX 1

APPROXIMATE SOLUTION OF THE PROPAGATION CONSTANT IN THE
CYLINDRICAL WAVEGUIDE COATED WITH A LOSSY DIELECTRIC MATERIAL

In this appendix, we derive the approximate solution based on the pertur-

bation theory. Refer to the main text for the notations.

The fields in the perfect cylindrical waveguide are given by

X = zy (magnetic vector potential)

. T o-L30

p Jwe 3poz » Yo PO$

T = 1 SZTD T = - 3V

¢ " Twep apoz S R

T . L[, 2 K T =0 for T (Al.1)
z  Juwe |,2 ' z

and
F= gw (electric vector potential)
g oaoLl3w g L 2%y
P pap ’ p  Juwu 9pdz
By 1%
By =% v By = Thup 50z
) ~ (AL.2}
= SE ey | ee—— f TE . )
Ez 0 , Hz Tau 822 + k ] or
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The wave functions satisfying the boundary condition are

. -
- Emn cos mé¢ -jk_z
Y = J l===p e Z (Al.3)
mn mL b J lstn m¢
’E' \ ‘tﬂ
cos m -1k z
VI Jm—%-'l P e Ik, (Al.4)
\ J |sin m¢

! t
where £  and Ean 8T nth zeros of Jn(x) and Jn(x), regspectively. The disper-

mn

gsion relation is

2 2 2 2
kz'+ kp = Ko = W e, (Al.5)
where
'
£
kp = :n or g:n (Al.6)

We approximate the perturbed fields in the denominator of Eq. (2.1) by the
unperturbed fields. In the numerator, we use the quasistatic approximation [35]
such that

g =:—r g (A1.7)
where €. is the complex dielectric constant of the coating material., This may
be a good approximation assuming the tangential electric field is small near the
surface and the electric field is nearly normal to the surface in the dielectric
region, Assuming Ay = 0, Eq. (2.1) becomes in this approximation

we [, (e = 1) E_ & ds
kK -k = - 0o ‘d.r. r 0 0 (Al.8)

2 f (Eo x ﬁo)vz ds
S
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where the integral in the numerator is over the cross section in the dielectric

region (d.r.), and the one in the denominator is over the cross-sectional area

of the cylinder.

Substituting the fields fo. the TE mode in (Al.2), we obtain

where
2 '
o 2 2
B, (x) ’:2- Jp(x) + J.7(x)

Using the recurrence formula [9],

2
I, (%)

1

2 m
gy(x) = J 1, (%) + =
Substituting Eq. (Al.l}) in Eq. (Al.9), we obtain

]
E a
f{—i'“ }
1 - 7

uoeo(er - 1)

z 20 zerkzo l (;mn)z - n2

2 t
2 Jm(gmn)

for HE (TEmn)

for HE_(TE_ )

(Al.9)

(Al1.10)

(Al.11)

(2.2)

where f(x) is given in Eq. (2.4). For the TM mode, we follow a similar proce-

dure with the fields given in Eqs. (Al.l) and (Al.3).

[f Emna

- kzo<€r - 1 -
z zo € 2
r &n 2
7 Il (Epn)
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Then we obtain

2
for EHmn (Tan)

(2.3)



r?f‘

ORIGINI L Y
OF POOR GusLhy

APPENDIX 2

EXACT NUMERICAL SOLUTION OF THE PROPAGATION CONSTANT
IN THE CYLINDRICAL WAVEGUIDE COATED WITH A LOSSY DIELECTRIC MATERIAL [10]

The field expressions in terms of the wave functions are given in Appendix
l. The wave furictions in Region I (Figure 1) satisfying the boundary condition

at the origin are given by

- ' -4k '
Wi(kplp) = AJm(kplp) cos m¢ e dk,2 (A2%1)

k z

q;(kplp) - BJm(kplp) sin mé emj z (A2.2)

and the wave functions in Region Il satisfying the bouwndary condition at the

conducting surface 2re given by

- -jk
ﬁ;l(kpzp) = C[Jm(kpzp) Nm(kpzb) - Nm(kpzp) Jm(kpzb)] cos m¢ e Jk,z (A2.3)

I1 ' , ' -jk,z
U (kpzp) = D[Jm(kpzp) Nm(kp?_b) - Nm(kpzp) Jm(kpzb)] sin m¢ e (A2.4)

where
2 2 2 2
kp1 + kz = Wwe iy = kl
2 2 2 _ .2
kpz + kz = W €2u2 = kZ (A2.5)

¢'s with and without the bar indicate TM and TE modes, respectively. For other
notations, please refer to the main text (Section 2.1). Note that the angular

terms of the wave functions are chosen such that these two modes are coupled.
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Substituting Eqs. (A2.1) through (A2.4) in Eqs. (Al.l) and (Al.2), we obtain the
general field expressions given in Eqs. (2.13) through (2.18). Matching the

tangential fields between Regions I and II, we have four equations,

2 2
B Aol ¢ fef3
z 81 €2

2 2
P o WL o)
2 " M

' Bkzm [} Dkzm
Hy  AkgF) g By T OBy Yo By
Ak m [] Ck m 1 N

By meg Pt BRGF e By Y DkpR, (A2.6)

where the notations are given in Section 2.l.2. For a nontrivial solution for
A, B, C and D, the determinant for Eq. (A2.6) must vanish. This condition gives

the characteristic equation given in Eq. (2.5).
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APPENDIX 3
NORMAL MODES PROPAGATING INTO A CYLINDRICAL
WAVEGUIDE FROM THE INCIDENT PLANE WAVE
The geometry for this problem is shown in Figure 2, and the notations are
si-dicated in the main text (Section 2.3).

The transverse electric and magnetic fields in the waveguide at z = 0+ are

given by
Biemch =[] g+t Kooy gy | Famn oo (43.1)
t\2 mn- mn mn mn k_  “mn'mn k mn’ mn *
m,n o o

k k

* + 1 zmn V ,° v zmn H ,*

H(z = 0) =g [ |5—C (z x ﬁmn> + c, (z x U )
om,n o (¢]

+‘EZn(£ x an) +‘Eﬁn(; X 6$n) (43.2)

where C's are constants. The symbols with the bar indicate the TM mode, while
those without the bar indicate the TE mode, and # and ¥ are given in Eqs. (2.26)

and (2.27). We can also write § and ¥ such that

V,H_ » vV,H
l-fmr’l - Nmn z X Vt:wmn (A3.3)
v H= = -V,H 4
vm; Non vtwmn (A3.4)
where
~ v - . i
¥ cos mé
\pzn m{ b sin m¢
=V 1 )
¥ sin m¢
F_..Hmn = Jm(—g—gﬂ o) (A3o6)
wmn J|cos mé
L
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Define the orthonormalization condition such that

V,H aV,H

N "V 100> = 2 6 S (A3.7a)
V,H aV,H

FVoH GV, 2o 8t 8t (A3.7b)
V,H gV, H

<6 ‘m > = (A3.7¢)

Superscripts V, H indicate that these conditions apply to both cases of vertical
and horizontal polarizations. However these two normal fields are orthogonal.

Substituting Eq. (A3.3) in the right-hand side of Eq. (A3.7a), we obtain

2 2 :
<ﬁ" H 3V, H'> = No <(z x Vt"XSH)°(z X vc\vXI-’g.»

2 V,H _ V,H
Nmn<vt:wm:’1 ‘vc"pm'n'>

2 V,H _ V,H
Nmn éH vt:q)mn .Vtwm"n' ds

V,H
- N2 V,H V,H v,H %%an
- Nmn S{f wmr’x Vi ‘Pm:n' ds + § wmn —3;— d,Q, (A3'8)

Due to the boundary condition at the surface, the second term vanishes. Since

vZwmn [Eﬂl' ] q’mn ’

(A3.8) becomes

|

<6VH+VH 2 E‘mnz b Emn
mn> N § (1 + 8 5) Ti—p fo pdp |J|——

mn mm' nn

2 T .2, ‘2
Nmnsmm' nn'(1 + smO) —Z-Jm(gmn)[(gmn) -

Then, the normalization constant becomes
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Nooo= (22, /7(1 + <smo)]1/2 [(E,:m)2 - n?)7 Y2 1, ¢ g;m)rl (A3.9)

Equations (A3.7b) and (A3.7c) can be similarly proved. The normalization

constant of the TM mode is shown to be
N = [2Z /%(1 + & K lg I .. ( )l'l (A3.10)
ma o m0 gmn w1 ¢ San °
First, we assume the tangential electric field is continuous at z = 0:
Nz = 07) = B (z = 0D (a3.11)

From Eq. (2.22),

i - ~
Etn(z mQ) = E, x cos 8 exp[-jkxxl (A3.12)
and the right-hand side of Eq. (A3.11) is given in Eq. (A3.1). Multiplying both
sides of Eq. (A3.12) by the integration operator,
b 2n
V
[ edp [ ap TR (A3.13)
o )

and using the orthonormalization conditions of Eq. (3.7), we obtain

\' A >

Cmn b 27 Umn Y{w)
Z, I = E  cos 8 fo od p fo d¢ H 2o (A3.14)
mn mn X
where
A =ik
f(x) =x e IHx*

Amitay and Galindo evaluated the integral of Eq. (A3.14) (Eq. (6) in reference

[11]). The coefficients in Eq. (A3.14) then becone
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}I} ;v"‘«"l e ;7
\Y
c E 0
mn o 2nm m-1
CH I-z—o- cos 90 Nmn k. ( j) J (Emn> J (k. b) [ 1] (AS.IS)
mn

We can following a similar procedure for the other two coefficients, They are

shown to be

'

-1
mn oo — "mn
EH zokzmn cos 90 Nun 2 kx Jm(;mn> Jm(kxb) ! (A3.16)
X b

If we match the tangential magnetic field,

'ﬁt“(z =07 = (z = 0" (A3.17)

where

By~ =ik x
ﬁtn(z = O+) ==-7-t2-ye:l X
o

and the right-hand side of Eq. (A3.17) is given in Eq. (A3.2). If we follow a
similar procedure as before, the result is different from the one obtained by
matching the tangential electric fields. The only difference in this case is
that the cos 8  terms in Egs. (A3.15) and (A3.16) and the factor of k__ /k

zmn' o'

The coefficients in this approach is given by

v T
C E k 0

mn 00 217 m m-1 !

an = o N, K (=3) J (6 ) Ik b) . (A3.18)
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-y o-1
C E 27E_(=3) 0
t
mn 0 — San
- | " N 2 kam(gmu) Jm(kxb) _ (43.19)
C VA n 1
mn o) k., = [

In this report, we use the electrical-field matching. Witt and Price [12] indi-
cated that using the magnetic-field matching gives a better convergency for the
high (evanescent) modes. However, as shown in Eq. (A.18), this method gives a
very large coefficient for the mode near the cutoff frequency. In this case,
the total power transmitted may be more tham 100%, which can not be justified in
a physical point of view.

When eo = 0 (normal incidence), matchiﬁg the electric fields at z = 0,
the transmitted tangential electric field is given by

-jk-!:l. nz ~ g
ﬁt = ZEO 2 re ,p 3 o 2 1-—%2 pl| cos ¢
n Jl(gm)[(sln) - 1)
] ] El
¢ Eln Jl + sin ¢ (A3.20)

Note that we have terms with m = 1 only because the incident field is linearly
polarized in the x~direction. Also, from Eq. (A3.2), the transverse magnetic

field is given by

-jkzlnz '
g = 2E, € %s1n L T
e =TT L YR NY P&y dy |7 P sin ¢
oo nJ (g (g

- £
+ ¢%Jl [—1—“- p}cos b (A3.21)

Assuming that the perturbation is not too large, we use the fields in the
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unperturbed waveguide for the fields in the perturbed waveguide except for the
exponentially decaying factor in the z-direction. Then the power attenuation of

the transmitted wave from the normally incident field is given by

P 4 Bln éxp[—22a1n]
P 2 ' ™3 112
o b%k n [Jl(eln)((f,'ln) 1)]
' 2 ' 2
b 2 £ 1] &
b 1n 2 In
"fo pdp ?_’JL{T" TR C el

a2y (Bin/koz exp[-2zq) ]
(g5 )% -1

(43,22)

where
kin ™ Bin ~ 3%9n

2 2
Po=Eo b /Zo g

Here P0 is the power incident on the area of the aperture. The integration in

Eq. (A3.22) is evaluated in Eq. (Al.9). i
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