8,832 research outputs found
Statistical analysis of the 70 meter antenna surface distortions
Statistical analysis of surface distortions of the 70 meter NASA/JPL antenna, located at Goldstone, was performed. The purpose of this analysis is to verify whether deviations due to gravity loading can be treated as quasi-random variables with normal distribution. Histograms of the RF pathlength error distribution for several antenna elevation positions were generated. The results indicate that the deviations from the ideal antenna surface are not normally distributed. The observed density distribution for all antenna elevation angles is taller and narrower than the normal density, which results in large positive values of kurtosis and a significant amount of skewness. The skewness of the distribution changes from positive to negative as the antenna elevation changes from zenith to horizon
A 0.8 V T Network-Based 2.6 GHz Downconverter RFIC
A 2.6 GHz downconverter RFIC is designed and implemented using a 0.18 μm CMOS standard process. An important goal of the design is to achieve the high linearity that is required in WiMAX systems with a low supply voltage. A passive T phase-shift network is used as an RF input stage in a Gilbert cell to reduce supply voltage. A single supply voltage of 0.8 V is used with a power consumption of 5.87 mW. The T network-based downconverter achieves a conversion gain (CG) of 5 dB, a single-sideband noise figure (NF) of 16.16 dB, an RF-to-IF isolation of greater than 20 dB, and an input-referred third-order intercept point (IIP3) of 1 dBm when the LO power of -13 dBm is applied
Model reconstructions for the Si(337) orientation
Although unstable, the Si(337) orientation has been known to appear in
diverse experimental situations such as the nanoscale faceting of Si(112), or
in the case of miscutting a Si(113) surface. Various models for Si(337) have
been proposed over time, which motivates a comprehensive study of the structure
of this orientation. Such a study is undertaken in this article, where we
report the results of a genetic algorithm optimization of the Si(337)- surface. The algorithm is coupled with a highly optimized empirical
potential for silicon, which is used as an efficient way to build a set of
possible Si(337) models; these structures are subsequently relaxed at the level
of ab initio density functional methods. Using this procedure, we retrieve most
of the (337) reconstructions proposed in previous works, as well as a number of
novel ones.Comment: 5 figures (low res.); to appear in J. Appl. Phy
Deutsch-Jozsa algorithm as a test of quantum computation
A redundancy in the existing Deutsch-Jozsa quantum algorithm is removed and a
refined algorithm, which reduces the size of the register and simplifies the
function evaluation, is proposed. The refined version allows a simpler analysis
of the use of entanglement between the qubits in the algorithm and provides
criteria for deciding when the Deutsch-Jozsa algorithm constitutes a meaningful
test of quantum computation.Comment: 10 pages, 2 figures, RevTex, Approved for publication in Phys Rev
Realization of generalized quantum searching using nuclear magnetic resonance
According to the theoretical results, the quantum searching algorithm can be
generalized by replacing the Walsh-Hadamard(W-H) transform by almost any
quantum mechanical operation. We have implemented the generalized algorithm
using nuclear magnetic resonance techniques with a solution of chloroform
molecules. Experimental results show the good agreement between theory and
experiment.Comment: 11 pages,3 figure. Accepted by Phys. Rev. A. Scheduled Issue: 01 Mar
200
Inter-band magnetoplasmons in mono- and bi-layer graphene
Collective excitations spectrum of Dirac electrons in mono and bilayer
graphene in the presence of a uniform magnetic field is investigated.
Analytical results for inter-Landau band plasmon spectrum within the
self-consistent-field approach are obtained. SdH type oscillations that are a
monotonic function of the magnetic field are observed in the plasmon spectrum
of both mono- and bi-layer graphene systems. The results presented are also
compared with those obtained in conventional 2DEG. The chiral nature of the
quasiparticles in mono and bilayer graphene system results in the observation
of and Berry's phase in the SdH- type oscillations in the plasmon
spectrum.Comment: 9 pages, 2 figure
Nuclear Magnetic Resonance Quantum Computing Using Liquid Crystal Solvents
Liquid crystals offer several advantages as solvents for molecules used for
nuclear magnetic resonance quantum computing (NMRQC). The dipolar coupling
between nuclear spins manifest in the NMR spectra of molecules oriented by a
liquid crystal permits a significant increase in clock frequency, while short
spin-lattice relaxation times permit fast recycling of algorithms, and save
time in calibration and signal-enhancement experiments. Furthermore, the use of
liquid crystal solvents offers scalability in the form of an expanded library
of spin-bearing molecules suitable for NMRQC. These ideas are demonstrated with
the successful execution of a 2-qubit Grover search using a molecule
(CHCl) oriented in a liquid crystal and a clock speed eight
times greater than in an isotropic solvent. Perhaps more importantly, five
times as many logic operations can be executed within the coherence time using
the liquid crystal solvent.Comment: Minor changes. Published in Appl. Phys. Lett. v.75, no.22, 29 Nov
1999, p.3563-356
Quantum process reconstruction based on mutually unbiased basis
We study a quantum process reconstruction based on the use of mutually
unbiased projectors (MUB-projectors) as input states for a D-dimensional
quantum system, with D being a power of a prime number. This approach connects
the results of quantum-state tomography using mutually unbiased bases (MUB)
with the coefficients of a quantum process, expanded in terms of
MUB-projectors. We also study the performance of the reconstruction scheme
against random errors when measuring probabilities at the MUB-projectors.Comment: 6 pages, 1 figur
Ion traps fabricated in a CMOS foundry
We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm
CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the
top metal layer of the process for the trap electrodes. The process includes
doped active regions and metal interconnect layers, allowing for co-fabrication
of standard CMOS circuitry as well as devices for optical control and
measurement. With one of the interconnect layers defining a ground plane
between the trap electrode layer and the p-type doped silicon substrate, ion
loading is robust and trapping is stable. We measure a motional heating rate
comparable to those seen in surface-electrode traps of similar size. This is
the first demonstration of scalable quantum computing hardware, in any
modality, utilizing a commercial CMOS process, and it opens the door to
integration and co-fabrication of electronics and photonics for large-scale
quantum processing in trapped-ion arrays.Comment: 4 pages, 3 figure
- …