4,115 research outputs found

    Scaling and memory in the return intervals of energy dissipation rate in three-dimensional fully developed turbulence

    Full text link
    We study the statistical properties of return intervals rr between successive energy dissipation rates above a certain threshold QQ in three-dimensional fully developed turbulence. We find that the distribution function PQ(r)P_Q(r) scales with the mean return interval RQR_Q as PQ(r)=RQ−1f(r/RQ)P_Q(r)=R_Q^{-1}f(r/R_Q) except for r=1r=1, where the scaling function f(x)f(x) has two power-law regimes. The return intervals are short-term and long-term correlated and possess multifractal nature. The Hurst index of the return intervals decays exponentially against RQR_Q, predicting that rare extreme events with RQ→∞R_Q\to\infty are also long-term correlated with the Hurst index H∞=0.639H_\infty=0.639.Comment: 5 pages, 5 figure

    SPeC: A Soft Prompt-Based Calibration on Mitigating Performance Variability in Clinical Notes Summarization

    Full text link
    Electronic health records (EHRs) store an extensive array of patient information, encompassing medical histories, diagnoses, treatments, and test outcomes. These records are crucial for enabling healthcare providers to make well-informed decisions regarding patient care. Summarizing clinical notes further assists healthcare professionals in pinpointing potential health risks and making better-informed decisions. This process contributes to reducing errors and enhancing patient outcomes by ensuring providers have access to the most pertinent and current patient data. Recent research has shown that incorporating prompts with large language models (LLMs) substantially boosts the efficacy of summarization tasks. However, we show that this approach also leads to increased output variance, resulting in notably divergent outputs even when prompts share similar meanings. To tackle this challenge, we introduce a model-agnostic Soft Prompt-Based Calibration (SPeC) pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization. Experimental findings on multiple clinical note tasks and LLMs indicate that our method not only bolsters performance but also effectively curbs variance for various LLMs, providing a more uniform and dependable solution for summarizing vital medical information

    Direct vs. indirect optical recombination in Ge films grown on Si substrates

    Full text link
    The optical emission spectra from Ge films on Si are markedly different from their bulk Ge counterparts. Whereas bulk Ge emission is dominated by the material's indirect gap, the photoluminescence signal from Ge films is mainly associated with its direct band gap. Using a new class of Ge-on-Si films grown by a recently introduced CVD approach, we study the direct and indirect photoluminescence from intrinsic and doped samples and we conclude that the origin of the discrepancy is the lack of self-absorption in thin Ge films combined with a deviation from quasi-equilibrium conditions in the conduction band. The latter is confirmed by a simple model suggesting that the deviation from quasi-equilibrium is caused by the much shorter recombination lifetime in the films relative to bulk Ge

    Electric field-induced creation and directional motion of domain walls and skyrmion bubbles

    Full text link
    Magnetization dynamics driven by an electric field could provide long-term benefits to information technologies because of its ultralow power consumption. Meanwhile, the Dzyaloshinskii-Moriya interaction in interfacially asymmetric multilayers consisting of ferromagnetic and heavy-metal layers can stabilize topological spin textures, such as chiral domain walls, skyrmions, and skyrmion bubbles. These topological spin textures can be controlled by an electric field, and hold promise for building advanced spintronic devices. Here, we present an experimental and numerical study on the electric field-induced creation and directional motion of topological spin textures in magnetic multilayer films and racetracks with thickness gradient and interfacial Dzyaloshinskii-Moriya interaction at room temperature. We find that the electric field-induced directional motion of chiral domain wall is accompanied with the creation of skyrmion bubbles at certain conditions. We also demonstrate that the electric field variation can induce motion of skyrmion bubbles. Our findings may provide opportunities for developing skyrmion-based devices with ultralow power consumption.Comment: 26 pages, 6 figure

    Wavelength tunable spectral compression in a dispersion-increasing fiber

    Full text link
    Adiabatic soliton spectral compression in a dispersion-increasing fiber is demonstrated both numerically and experimentally. We show a positively-chirped pulse provides better spectral compression in a dispersion-increasing fiber with large anomalous dispersion ramp. An experimental spectral compression ratio of 15.5 is obtained using 350 fs positively-chirped input pulse centered at 1.5 um. A 30 nm wavelength tuning ability is experimentally achieved.Comment: 3 pages, 4 figures. Submitted 4/03/201

    Motor neuron-derived Thsd7a is essential for zebrafish vascular development via the Notch-dll4 signaling pathway.

    Get PDF
    BackgroundDevelopment of neural and vascular systems displays astonishing similarities among vertebrates. This parallelism is under a precise control of complex guidance signals and neurovascular interactions. Previously, our group identified a highly conserved neural protein called thrombospondin type I domain containing 7A (THSD7A). Soluble THSD7A promoted and guided endothelial cell migration, tube formation and sprouting. In addition, we showed that thsd7a could be detected in the nervous system and was required for intersegmental vessels (ISV) patterning during zebrafish development. However, the exact origin of THSD7A and its effect on neurovascular interaction remains unclear.ResultsIn this study, we discovered that zebrafish thsd7a was expressed in the primary motor neurons. Knockdown of Thsd7a disrupted normal primary motor neuron formation and ISV sprouting in the Tg(kdr:EGFP/mnx1:TagRFP) double transgenic zebrafish. Interestingly, we found that Thsd7a morphants displayed distinct phenotypes that are very similar to the loss of Notch-delta like 4 (dll4) signaling. Transcript profiling further revealed that expression levels of notch1b and its downstream targets, vegfr2/3 and nrarpb, were down-regulated in the Thsd7a morphants. These data supported that zebrafish Thsd7a could regulate angiogenic sprouting via Notch-dll4 signaling during development.ConclusionsOur results suggested that motor neuron-derived Thsd7a plays a significant role in neurovascular interactions. Thsd7a could regulate ISV angiogenesis via Notch-dll4 signaling. Thus, Thsd7a is a potent angioneurin involved in the development of both neural and vascular systems

    Mutual Authentication and Key Exchange Protocols for Roaming Services in Wireless Mobile Networks

    Full text link

    Ring-Like Solitons in Plasmonic Fiber Waveguide Composed of Metal-Dielectric Multilayers

    Full text link
    We design a plasmonic fiber waveguide (PFW) composed of coaxial cylindrical metal-dielectric multilayers in nanoscale, and constitute the corresponding dynamical equations describing the modes of propagation in the PFW with the Kerr nonlinearity in the dielectric layers. The physics is connected to the discrete matrix nonlinear Schr\"{o}dinger equations, from which the highly confined ring-like solitons in scale of subwavelength are found both for the visible light and the near-infrared light in the self-defocusing condition. Moreover, the confinement could be further improved when increasing the intensity of the input light due to the cylindrical symmetry of the PFW, which means both the width and the radius of the ring are reduced.Comment: 4 figures, submitte
    • …
    corecore