1,646 research outputs found
Multiplet resonance lifetimes in resonant inelastic X-ray scattering involving shallow core levels
Resonant inelastic X-ray scattering (RIXS) spectra of model copper- and
nickel-based transition metal oxides are measured over a wide range of energies
near the M-edge (h=60-80eV) to better understand the properties of
resonant scattering involving shallow core levels. Standard multiplet RIXS
calculations are found to deviate significantly from the observed spectra.
However, by incorporating the self consistently calculated decay lifetime for
each intermediate resonance state within a given resonance edge, we obtain
dramatically improved agreement between data and theory. Our results suggest
that these textured lifetime corrections can enable a quantitative
correspondence between first principles predictions and RIXS data on model
multiplet systems. This accurate model is also used to analyze resonant elastic
scattering, which displays the elastic Fano effect and provides a rough upper
bound for the core hole shake-up response time.Comment: 6 pages, 3 figure
Recommended from our members
A design of resonant inelastic X-ray scattering (RIXS) spectrometer for spatial- and time-resolved spectroscopy.
The optical design of a Hettrick-Underwood-style soft X-ray spectrometer with Wolter type 1 mirrors is presented. The spectrometer with a nominal length of 3.1 m can achieve a high resolving power (resolving power higher than 10000) in the soft X-ray regime when a small source beam (<3 µm in the grating dispersion direction) and small pixel detector (5 µm effective pixel size) are used. Adding Wolter mirrors to the spectrometer before its dispersive elements can realize the spatial imaging capability, which finds applications in the spectroscopic studies of spatially dependent electronic structures in tandem catalysts, heterostructures, etc. In the pump-probe experiments where the pump beam perturbs the materials followed by the time-delayed probe beam to reveal the transient evolution of electronic structures, the imaging capability of the Wolter mirrors can offer the pixel-equivalent femtosecond time delay between the pump and probe beams when their wavefronts are not collinear. In combination with some special sample handing systems, such as liquid jets and droplets, the imaging capability can also be used to study the time-dependent electronic structure of chemical transformation spanning multiple time domains from microseconds to nanoseconds. The proposed Wolter mirrors can also be adopted to the existing soft X-ray spectrometers that use the Hettrick-Underwood optical scheme, expanding their capabilities in materials research
A screen-printed carbon electrode modified with a chitosan-based film for in situ heavy metal ions measurement
SEM images and FTIR data of the working electrode surface showed that Mn+ ions were adsorbed on chitosan (Chit) and crosslinked chitosan-carbon nanotube (Chit-CNT) films. XPS revealed that chelation of Mn+ ions with the –NH2/–OH groups from chitosan, –COOH group from carbon nanotubes, and aqua ligands represents a possible structure of the active Mn+ species in the Chit-based film. The electrochemical behaviors of the Chit-based film modified screen-printed carbon electrode (SPCE) were characterized for individual and simultaneous detection of Cu2+, Pb2+, Hg2+, Zn2+, Cd2+, and As3+ ions. For individual detection, the concentration range was 0.50–3.00 ppm with a detection limit of 0.4 ppm for Cu2+; 1.0–4.0 ppm with a detection limit of 0.5 ppm for Pb2+; 1.0–5.0 ppm with a detection limit of 0.8 ppm for Hg2+. For simultaneous detection, the lab chip sensor was successfully used to determine the concentrations of Pb2+, Cu2+, Hg2+, and As3+ ions simultaneously
Irreversible proliferation of magnetic moments at cleaved surfaces of the topological Kondo insulator SmB6
The compound SmB is the best established realization of a topological
Kondo insulator, in which a topological insulator state is obtained through
Kondo coherence. Recent studies have found evidence that the surface of SmB
hosts ferromagnetic domains, creating an intrinsic platform for unidirectional
ballistic transport at the domain boundaries. Here, surface-sensitive X-ray
absorption (XAS) and bulk-sensitive resonant inelastic X-ray scattering (RIXS)
spectra are measured at the Sm N-edge, and used to evaluate electronic
symmetries, excitations and temperature dependence near the surface of cleaved
samples. The XAS data show that the density of large-moment atomic multiplet
states on a cleaved surface grows irreversibly over time, to a degree that
likely exceeds a related change that has recently been observed in the surface
4f orbital occupation
Spectroscopic Signature of Oxidized Oxygen States in Peroxides
Recent debates on the oxygen redox behaviors in battery electrodes have
triggered a pressing demand for the reliable detection and understanding of
non-divalent oxygen states beyond conventional absorption spectroscopy. Here,
enabled by high-efficiency mapping of resonant inelastic X-ray scattering
(mRIXS) coupled with first-principles calculations, we report distinct mRIXS
features of the oxygen states in Li2O, Li2CO3, and especially, Li2O2, which are
successfully reproduced and interpreted theoretically. mRIXS signals are
dominated by valence-band decays in Li2O and Li2CO3. However, the oxidized
oxygen in Li2O2 leads to partially unoccupied O-2p states that yield a specific
intra-band excitonic feature in mRIXS. Such a feature displays a specific
emission energy in mRIXS, which disentangles the oxidized oxygen states from
the dominating transition-metal/oxygen hybridization features in absorption
spectroscopy, thus providing critical hints for both detecting and
understanding the oxygen redox reactions in transition-metal oxide based
battery materials.Comment: 25 pages, 4 figures, plus 11 pages of Supplementary Information with
4 figure
Recommended from our members
Dissociate lattice oxygen redox reactions from capacity and voltage drops of battery electrodes.
The oxygen redox (OR) activity is conventionally considered detrimental to the stability and kinetics of batteries. However, OR reactions are often confused by irreversible oxygen oxidation. Here, based on high-efficiency mapping of resonant inelastic x-ray scattering of both the transition metal and oxygen, we distinguish the lattice OR in Na0.6[Li0.2Mn0.8]O2 and compare it with Na2/3[Mg1/3Mn2/3]O2. Both systems display strong lattice OR activities but with distinct electrochemical stability. The comparison shows that the substantial capacity drop in Na0.6[Li0.2Mn0.8]O2 stems from non-lattice oxygen oxidations, and its voltage decay from an increasing Mn redox contribution upon cycling, contrasting those in Na2/3[Mg1/3Mn2/3]O2. We conclude that lattice OR is not the ringleader of the stability issue. Instead, irreversible oxygen oxidation and the changing cationic reactions lead to the capacity and voltage fade. We argue that lattice OR and other oxygen activities should/could be studied and treated separately to achieve viable OR-based electrodes
- …