9,943 research outputs found

    myCopter: Enabling Technologies for Personal Aerial Transportation Systems: Project status after 2.5 years

    Get PDF
    Current means of transportation for daily commuting are reaching their limits during peak travel times, which results in waste of fuel and loss of time and money. A recent study commissioned by the European Union considers a personal aerial transportation system (PATS) as a viable alternative for transportation to and from work. It also acknowledges that developing such a transportation system should not focus on designing a new flying vehicle for personal use, but instead on investigating issues surrounding the implementation of the transportation system itself. This is the aim of European project myCopter: to determine the social and technological aspects needed to set up a transportation system based on personal aerial vehicles (PAVs). The project focuses on three research areas: human-machine interfaces and training, automation technologies, and social acceptance. Our extended abstract for inclusion in the conference proceedings and our presentation will focus on the achievements during the first 2.5 years of the 4-year project. These include the development of an augmented dynamic model of a PAV with excellent handling qualities that are suitable for training purposes. The training requirements for novice pilots are currently under development. Experimental evaluations on haptic guidance and human-in-the-loop control tasks have allowed us to start implementing a haptic Highway-in-the-Sky display to support novice pilots and to investigate metrics for objectively determining workload using psychophysiological measurements. Within the project, developments for automation technologies have focused on vision-based algorithms. We have integrated such algorithms in the control and navigation architecture of unmanned aerial vehicles (UAVs). Detecting suitable landing spots from monocular camera images recorded in flight has proven to reliably work off-line, but further work is required to be able to use this approach in real time. Furthermore, we have built multiple low-cost UAVs and equipped them with radar sensors to test collision avoidance strategies in real flight. Such algorithms are currently under development and will take inspiration from crowd simulations. Finally, using technology assessment methodologies, we have assessed potential markets for PAVs and challenges for its integration into the current transportation system. This will lead to structured discussions on expectations and requirements of potential PAV users

    The effects of video compression on acceptability of images for monitoring life sciences experiments

    Get PDF
    Future manned space operations for Space Station Freedom will call for a variety of carefully planned multimedia digital communications, including full-frame-rate color video, to support remote operations of scientific experiments. This paper presents the results of an investigation to determine if video compression is a viable solution to transmission bandwidth constraints. It reports on the impact of different levels of compression and associated calculational parameters on image acceptability to investigators in life-sciences research at ARC. Three nonhuman life-sciences disciplines (plant, rodent, and primate biology) were selected for this study. A total of 33 subjects viewed experimental scenes in their own scientific disciplines. Ten plant scientists viewed still images of wheat stalks at various stages of growth. Each image was compressed to four different compression levels using the Joint Photographic Expert Group (JPEG) standard algorithm, and the images were presented in random order. Twelve and eleven staffmembers viewed 30-sec videotaped segments showing small rodents and a small primate, respectively. Each segment was repeated at four different compression levels in random order using an inverse cosine transform (ICT) algorithm. Each viewer made a series of subjective image-quality ratings. There was a significant difference in image ratings according to the type of scene viewed within disciplines; thus, ratings were scene dependent. Image (still and motion) acceptability does, in fact, vary according to compression level. The JPEG still-image-compression levels, even with the large range of 5:1 to 120:1 in this study, yielded equally high levels of acceptability. In contrast, the ICT algorithm for motion compression yielded a sharp decline in acceptability below 768 kb/sec. Therefore, if video compression is to be used as a solution for overcoming transmission bandwidth constraints, the effective management of the ratio and compression parameters according to scientific discipline and experiment type is critical to the success of remote experiments

    A study of video frame rate on the perception of moving imagery detail

    Get PDF
    The rate at which each frame of color moving video imagery is displayed was varied in small steps to determine what is the minimal acceptable frame rate for life scientists viewing white rats within a small enclosure. Two, twenty five second-long scenes (slow and fast animal motions) were evaluated by nine NASA principal investigators and animal care technicians. The mean minimum acceptable frame rate across these subjects was 3.9 fps both for the slow and fast moving animal scenes. The highest single trial frame rate averaged across all subjects for the slow and the fast scene was 6.2 and 4.8, respectively. Further research is called for in which frame rate, image size, and color/gray scale depth are covaried during the same observation period

    Finite geometry models of electric field noise from patch potentials in ion traps

    Full text link
    We model electric field noise from fluctuating patch potentials on conducting surfaces by taking into account the finite geometry of the ion trap electrodes to gain insight into the origin of anomalous heating in ion traps. The scaling of anomalous heating rates with surface distance, dd, is obtained for several generic geometries of relevance to current ion trap designs, ranging from planar to spheroidal electrodes. The influence of patch size is studied both by solving Laplace's equation in terms of the appropriate Green's function as well as through an eigenfunction expansion. Scaling with surface distance is found to be highly dependent on the choice of geometry and the relative scale between the spatial extent of the electrode, the ion-electrode distance, and the patch size. Our model generally supports the d4d^{-4} dependence currently found by most experiments and models, but also predicts geometry-driven deviations from this trend

    Surface-electrode ion trap with integrated light source

    Full text link
    An atomic ion is trapped at the tip of a single-mode optical fiber in a cryogenic (8 K) surface-electrode ion trap. The fiber serves as an integrated source of laser light, which drives the quadrupole qubit transition of 88^{88}Sr+^+. Through \emph{in situ} translation of the nodal point of the trapping field, the Gaussian beam profile of the fiber output is imaged, and the fiber-ion displacement, in units of the mode waist at the ion, is optimized to within 0.13±0.100.13\pm0.10 of the mode center despite an initial offset of 3.30±0.103.30\pm0.10. Fiber-induced charging at 125μ125 \muW is observed to be 10{\sim}10 V/m at an ion height of 670μ670 \mum, with charging and discharging time constants of 1.6±0.31.6\pm0.3 s and 4.7±0.64.7\pm0.6 s respectively. This work is of importance to large-scale, ion-based quantum information processing, where optics integration in surface-electrode designs may be a crucial enabling technology.Comment: 4 pages, 4 figure

    Quantum parallelism of the controlled-NOT operation: an experimental criterion for the evaluation of device performance

    Get PDF
    It is shown that a quantum controlled-NOT gate simultaneously performs the logical functions of three distinct conditional local operations. Each of these local operations can be verified by measuring a corresponding truth table of four local inputs and four local outputs. The quantum parallelism of the gate can then be observed directly in a set of three simple experimental tests, each of which has a clear intuitive interpretation in terms of classical logical operations. Specifically, quantum parallelism is achieved if the average fidelity of the three classical operations exceeds 2/3. It is thus possible to evaluate the essential quantum parallelism of an experimental controlled-NOT gate by testing only three characteristic classical operations performed by the gate.Comment: 6 pages, no figures, added references and discussio

    Model reconstructions for the Si(337) orientation

    Full text link
    Although unstable, the Si(337) orientation has been known to appear in diverse experimental situations such as the nanoscale faceting of Si(112), or in the case of miscutting a Si(113) surface. Various models for Si(337) have been proposed over time, which motivates a comprehensive study of the structure of this orientation. Such a study is undertaken in this article, where we report the results of a genetic algorithm optimization of the Si(337)-(2×1)(2\times 1) surface. The algorithm is coupled with a highly optimized empirical potential for silicon, which is used as an efficient way to build a set of possible Si(337) models; these structures are subsequently relaxed at the level of ab initio density functional methods. Using this procedure, we retrieve most of the (337) reconstructions proposed in previous works, as well as a number of novel ones.Comment: 5 figures (low res.); to appear in J. Appl. Phy

    An extensible genetic algorithm framework for problem solving in a common environment

    Get PDF
    An object-oriented framework is described for solving mathematical programs using genetic algorithms (GA). The advantages of this framework are its extensibility, modular design, and accessibility to existing programming code. The framework also incorporates a graphical user's interface that may be used to build new GA's as well as run GA simulations. Two power system problems are solved by implementing genetic algorithms using the framework. The first is a continuous optimization problem and the second an integer programming problem. We illustrate the flexibility of the framework as well as its other features on our test problems.published_or_final_versio

    Adaptive Design of Excitonic Absorption in Broken-Symmetry Quantum Wells

    Full text link
    Adaptive quantum design is used to identify broken-symmetry quantum well potential profiles with optical response properties superior to previous ad-hoc solutions. This technique performs an unbiased stochastic search of configuration space. It allows us to engineer many-body excitonic wave functions and thus provides a new methodology to efficiently develop optimized quantum confined Stark effect device structures.Comment: 4 pages, 3 encapsulated postscript figure
    corecore