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It is shown that a quantum controlled-NOT gate simultaneously performs the logical functions of three
distinct conditional local operations. Each of these local operations can be verified by measuring a correspond-
ing truth table of four local inputs and four local outputs. The quantum parallelism of the gate can then be
observed directly in a set of three simple experimental tests, each of which has a clear intuitive interpretation
in terms of classical logical operations. Specifically, quantum parallelism is achieved if the average fidelity of
the three classical operations exceeds 2/3. It is thus possible to evaluate the essential quantum parallelism of
an experimental controlled-NOT gate by testing only three characteristic classical operations performed by the
gate.
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Quantum-information science may provide a wide range
of new technologies by making the unique properties of the
quantum world available for the processing and transmission
of data. In particular, quantum computation may enhance the
efficiency of computational tasks by exploiting the quantum
parallelism of quantum logic operations. In order to realize
such an efficient quantum computer, it is necessary to imple-
ment a universal set of quantum gates, including at least one
interaction between pairs of qubits. Since the quantum
controlled-NOT gate can provide this essential interaction, the
experimental realization of the controlled-NOT operation on
pairs of qubits is a significant step toward the realization of
universal quantum computation �1�.

Recently, there have been several successful demonstra-
tions of experimental quantum controlled-NOT gates using
superconducting charge qubits �2�, trapped ions �3,4�, and
photonic qubits �5–7�. However, each of these realizations
has its own characteristic noise signatures, and the actual
performance of the gates is different from the ideal case of a
fully coherent quantum controlled-NOT operation. A com-
plete characterization of the noise signature of a two-qubit
gate can only be achieved by quantum process tomography,
which characterizes the two-qubit operation in terms of 256
combinations of input and output states �8–11�. Obviously,
the experimental effort involved in such a characterization is
very great. It may therefore be useful to identify the essential
operations of the quantum controlled-NOT gate in order to
define more efficient tests for experimentally realized quan-
tum gates.

In this paper, it is shown that the ideal quantum
controlled-NOT operation can be expanded in terms of a set
of three local operations, minus a dephasing term. Each of
the local operations can be tested using a single setting of
four orthogonal input states and four orthogonal measure-
ment projections in the output. It is thus possible to charac-
terize the essential elements of the quantum controlled-NOT

gate by measuring the fidelity of only three classical truth

tables. The quantum properties of the gate can then be iden-
tified with the parallel performance of three well-defined
classical logical operations observable in three different basis
sets of distinguishable input and output states.

The unitary operator describing an ideal quantum
controlled-NOT �CNOT� operation can be expressed in a basis-
independent manner by using the Pauli matrices �I ,X ,Y ,Z�,
where the logical states of the computational basis are de-
fined by Z�0�= �0� and Z�1�=−�1� �1�. The effects of the quan-
tum process on an arbitrary two-qubit input density matrix �̂
can then be written as

ECNOT��̂� = ÛCNOT�̂ÛCNOT
†

with

ÛCNOT =
1

2
�I � I + I � X + Z � I − Z � X� . �1�

Here, the unitary operation ÛCNOT has been expanded in
terms of the shortest possible sum of local operator products
�12�. In this representation, the elementary operations appear
to be the spin flips represented by X , Y, and Z. However, an
incoherent mixture of the four components in Eq. �1� would
simply result in dephasing between the Z eigenstates in sys-
tem 1 and between the X eigenstates in system 2,

D��̂� =
1

4
��I � I��̂�I � I� + �I � X��̂�I � X� + �Z � I��̂�Z � I�

+ �Z � X��̂�Z � X�� . �2�

The comparison between Eqs. �1� and �2� indicates that all of
the essential features of the quantum controlled-NOT gate can
be given in terms of the coherences between the elementary
spin-flip operations. Therefore, an experimental verification
of the quantum gate operation should focus on the observ-
able effects of these coherences on local input and output
states. In the following, these effects will be identified by
considering local operations that have the same coherences
as the quantum controlled-NOT gate.*Electronic address: h.hofmann@osa.org
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In local operations, it is always possible to identify a
simple physical interpretation of the coherence between the
spin-flip operations. For example, the superpositions �I
+Z� /2 and �I−Z� /2 represent measurement projections on
the eigenstates of Z. The coherence between I � I and Z � I
and the coherence between I � X and Z � X can therefore be
understood in terms of a conditional local operation L1��̂�
given by a measurement of Z in system 1 followed by a
conditional spin-flip operation X in system 2 if the result of
the measurement in system 1 is Z=−1,

L1��̂� = �̂Z0�̂�̂Z0
† + �̂Z1�̂�̂Z1

† ,

�̂Z0 =
1

2
�I � I + Z � I� = �Z = + 1�	Z = + 1� � I ,

�̂Z1 =
1

2
�I � X − Z � X� = �Z = − 1�	Z = − 1� � X . �3�

This operation is in fact already a complete controlled-NOT

operation in the computational basis, performed entirely by
conditional local operations �and thus equivalent to an inter-
action by local operations and classical communication�. The
coherences between I � I and Z � I and between I � X and
Z � X are therefore sufficient to define the operation of the
quantum controlled-NOT gate in the computational basis,
while the other four coherences have no effect on the gate
performance observed in this basis.

A very similar interpretation can be found for the coher-
ences between I � I and I � X and between Z � I and Z � X. In
this case, the roles of systems 1 and 2 and the roles of X and
Z have simply been exchanged. The conditional local opera-
tion L2��̂� therefore describes a measurement of X in system
2, followed by a conditional spin-flip operation Z in system 1
if the result of the measurement in system 2 is X=−1,

L2��̂� = �̂X0�̂�̂X0
† + �̂X1�̂�̂X1

† ,

�̂X0 =
1

2
�I � I + I � X� = I � �X = + 1�	X = + 1� ,

�̂X1 =
1

2
�I � X − Z � X� = Z � �X = − 1�	X = − 1� . �4�

As the symmetry between L1 and L2 suggests, this is also a
complete controlled-NOT operation, performed in the X basis
with reversed roles for the target and the control �13�. The
coherences between I � I and I � X and between Z � I and
Z � X are therefore solely responsible for the performance of
the quantum controlled-NOT gate in the X basis.

Finally, a different interpretation is necessary to identify
the effects of the coherences between I � I and Z � X and
between I � X and Z � I, since these coherences are symmet-
ric in the two qubits. Such coherences can be obtained by
performing correlated � /2 rotations of the spins in the two
systems,

L3��̂� =
1

2
�Û+�/2�̂Û+�/2

† + Û−�/2�̂Û−�/2
† � ,

Û+�/2 =
1

2
�I + iZ� � �I + iX� = exp
+ i

�

4
Z� � exp
+ i

�

4
X� ,

Û−�/2 =
1

2
�I − iZ� � �I − iX� = exp
− i

�

4
Z� � exp
− i

�

4
X� .

�5�

It might be worth noting that this operation corresponds to
the best possible local approximation of a quantum phase
gate operation in the Z � X basis, since it results in a total
phase change of � for the eigenstate with Z= +1 in system 1
and X= +1 in system 2, while preserving the phase of the
eigenstate with Z=−1 and X=−1. The ideal nonlocal opera-

tion given by ÛCNOT also preserves the phases of the other
two eigenstates, but the price to be paid for performing the
phase shift by local operations only is the complete random-
ization of the phases for Z=−1 and X= +1, and for Z= +1
and X=−1. However, for the purpose of verifying the opera-
tion experimentally, it is more useful to consider the effect of
L3 on eigenstates of X � Z in the input. Specifically, the � /2
rotation around the Z axis can be verified by using an X
eigenstate as input which should be transformed into the cor-
responding Y eigenstate in the output. Likewise, the � /2
rotation around the X axis can be verified by using a Z eigen-
state as input. Since the operation L3 is a mixture of two
possible rotation directions, the output states for this input
basis are mixtures of Y � Y eigenstates, with 	Y � Y��out�=
−	X � Z��in�. It is therefore possible to observe the coher-
ences between I � I and Z � X and between I � X and Z � I by
using eigenstates of X � Z as input states and by measuring
Y � Y in the output. Note that the reverse is also possible, but
this choice of input and output basis makes it easier to esti-
mate the entanglement capability of the gate from the fideli-
ties of the observed operations, as will be explained below.

It is now possible to express the ideal quantum controlled-
NOT operation in terms of the three local operations Li and
the dephasing operation D. This expansion of the quantum
process reads

ECNOT��̂� = L1��̂� + L2��̂� + L3��̂� − 2D��̂� . �6�

The role of the negative dephasing term in this expansion
can be understood by considering the observable effects of
the local operations Li in different basis settings. As dis-
cussed above, each local operation is associated with a char-
acteristic logical operation observed using a specific selec-
tion of input and output states. For each of these specific
input and output settings, the effects of the other two local
operations are indistinguishable from the effects of dephas-
ing. The negative dephasing term in Eq. �6� therefore com-
pensates the noise effects of the other local operations, leav-
ing only the logical function performed by the local
operation corresponding to this specific choice of input and
output states. The quantum controlled-NOT gate is thus ca-
pable of performing the logical functions of all three local
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operations with a perfect fidelity of 1, a task that cannot be
achieved by any positive sum of local conditional operations.

A quantitative criterion for the experimental observation
of this kind of quantum parallelism can be obtained from the
fidelities of the three classical logical operations associated
with the local operations Li. These classical fidelities are de-
fined as the probability of obtaining the correct output, aver-
aged over all four possible inputs. In terms of the measure-
ment probabilities Pij�kl�aoutbout�ainbin� of obtaining the
logical output aout and bout for a given logical input ain and
bin in the logical operation realized by choosing k � l eigen-
states as input and measuring i � j in the output, the fidelities
of the three classical logical operations are given by

F1 =
1

4
�PZZ�ZZ�00�00� + PZZ�ZZ�01�01� + PZZ�ZZ�11�10�

+ PZZ�ZZ�10�11�� ,

F2 =
1

4
�PXX�XX�00�00� + PXX�XX�11�01� + PXX�XX�10�10�

+ PXX�XX�01�11�� ,

F3 =
1

4
�PYY�XZ�10�00� + PYY�XZ�01�00� + PYY�XZ�00�01�

+ PYY�XZ�11�01� + PYY�XZ�00�10� + PYY�XZ�11�10�

+ PYY�XZ�10�11� + PYY�XZ�01�11�� . �7�

Here, the fidelity F1 is simply the classical fidelity of the
controlled-NOT operation in the computational basis �ZZ ba-
sis�, as determined in previous experiments from the truth
table of the classical controlled-NOT operation. Specifically,
the measurement probabilities reported in �3� correspond to
an overall classical fidelity of F1=73.5%, and the classical
fidelity reported in �5� was F1=84%. The determination of
classical fidelities is thus a straightforward and well-
established experimental procedure for the characterization
of classical gate properties. The fidelity F2 for the classical
controlled-NOT operation observed in the XX basis can be
obtained by testing the gate operation using the XX basis
instead of the ZZ basis to define both input states and output
measurements. Taken by itself, this fidelity is just another
classical characterization of the gate operation, without any
indications of quantum coherence or entanglement. How-
ever, only a quantum gate can perform the controlled-NOT

operation in both the ZZ and the XX bases. Finally, the third
component of the ideal controlled-NOT operation given in
Eq. �6� can be obtained by measuring the truth table for an
input in the YY basis and an output measurement of the XZ
basis. Here, each input has two correct outputs, since the
operation only defines the correlation between output bits,
not their specific individual values. In the ideal case, each
measurement probability contributing to F3 is therefore ex-
pected to be about 50%. A characterization of the quantum-
coherent properties of the gate can thus be obtained by
merely performing the classical evaluation of individual gate
operations for a selection of three different input bases. As

Eq. �7� shows, this can be achieved by recording the prob-
abilities of 16 different local measurement outcomes ob-
tained with 12 different local input settings.

The ideal quantum controlled-NOT gate is the only quan-
tum process that has perfect fidelities of F1=F2=F3=1 for
all three local operations. On the other hand, the fidelities of
the dephasing operation D are F1=F2=F3=1/2. Each of the
local operations Li has one perfect fidelity of Fi=1 and two
fidelities with Fj =1/2 �j� i�. Thus it can be conjectured that
the average fidelity for local operations is limited to a maxi-
mal value of 2 /3 and that any expansion of the process into
a sum of local processes will require a negative dephasing
component if this limit is exceeded. If the only source of
errors is dephasing between the eigenstates of Z � X, it is
possible to reconstruct the noisy quantum controlled-NOT op-
eration from the three fidelities Fi by modifying the coeffi-
cients in the expansion given by Eq. �6�. The result reads

Eexp��̂� = �2F1 − 1�L1��̂� + �2F2 − 1�L2��̂� + �2F3 − 1�L3��̂�

+ 2�2 − F1 − F2 − F3�D��̂� . �8�

In this expansion of a noisy quantum controlled-NOT opera-
tion, quantum parallelism is expressed quantitatively in
terms of the contributions of each local operation Li. Each of
these contributions is equal to 2Fi−1. The number of parallel
local operations effectively performed by the gate can then
be defined as the sum of the contributions of the three op-
erations Li, given by 2�F1+F2+F3�−3. Quantum parallelism
is observed if this number is greater than 1. Thus the condi-
tion for quantum parallelism in an experimental quantum
controlled-NOT gate can be given by

F1 + F2 + F3 � 2. �9�

This means that the average fidelity of the three operations
should be greater than 2/3 in order to verify quantum paral-
lelism. For lower average fidelities, Eq. �8� describes a sta-
tistical mixture of local conditional operations that can be
performed without genuine quantum interactions, e.g., by us-
ing only local operations and classical communication be-
tween the two qubits.

The most simple case of quantum process estimation is
obtained if all classical fidelities are equal. In this case, the
quantum gate can be described by a mixture of the ideal gate
operation ECNOT and the dephasing operation D,

Eexp��̂� = pEECNOT��̂� + �1 − pE�D��̂�

= �2F − 1�ECNOT��̂� + 2�1 − F�D��̂� , �10�

where F1=F2=F3=F. The fidelity observed can then be
identified directly with the contribution pE of the ideal op-
eration ECNOT using pE=2F−1. For instance, when applied
to an experimental fidelity of 75%, this noise model would
suggest a quantum controlled-NOT contribution of 1/2 and a
noise contribution of 1/2. Nevertheless, this noisy operation
would still achieve quantum parallelism, since the fidelity is
greater than 2/3. Specifically, the condition for quantum par-
allelism in the noisy operation given by Eq. �10� is pE
�1/3. The role of the simplified noise model of Eq. �10� for
the evaluation of decoherence in quantum gates could thus
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be similar to the role played by Werner states for the evalu-
ation of mixed-state entanglement �14�.

As mentioned above, the noise model defined by Eq. �8�
assumes that the only source of errors is the loss of coher-
ence between the eigenstates of Z in system 1 and X in sys-
tem 2. This noise model has been chosen because it repre-
sents the errors typically introduced by local simulations of
the quantum controlled-NOT operations, as given by the op-
erations L1 to L3. As will be discussed in more detail in the
following, it is thus most sensitive to the nonlocality of the
gate �15�. Specifically, a more general noise model will also
include errors that change the eigenvalues of Z in system 1
and X in system 2. However, such errors will reduce the
fidelities Fi more rapidly than the dephasing errors repre-
sented by the local operations Li. Including such errors in the
noise model for a given set of fidelities Fi would thus lead to
a lower estimate for the total noise and may cause an over-
estimation of the entanglement capability of the gate.

It is in fact possible to proof that the criterion given by
inequality �9� provides an estimate of the entanglement ca-
pability that is independent of the noise model used. For this
purpose, it is sufficient to consider the amount of entangle-
ment that can be generated by an arbitrary noisy gate opera-
tion with fidelities Fi. In order to relate these fidelities di-
rectly to the entanglement capability, it should be noted that
a classical controlled-NOT operation will generate correla-
tions between the target and the control bit if the state of the
control bit is random and the input state of the target is
known. For example, a random mixture of the input states
�Z= +1;Z= +1� and �Z=−1;Z= +1� generates output states
with 	Z � Z�=1. However, the density matrix of a random
mixture of Z eigenstates is I /2, the same as that of a random
mixture of X eigenstates. Therefore, the successful operation
of the controlled-NOT gate in the Z basis implies that a cor-
relation of 	Z � Z�=1 is also obtained from an input-state
mixture of �X= +1;Z= +1� and �X=−1;Z= +1�. It is then
possible to verify that the average magnitudes of the corre-
lations generated by applying the gate operation to the four
input states in the XZ basis are related to the fidelities Fi by

�	Z � Z��out�� � 2F1 − 1,

�	X � X��out�� � 2F2 − 1,

�	Y � Y��out�� = 2F3 − 1. �11�

These three correlations are sufficient to determine a lower
bound of the entanglement generated in the operation �16�.
In particular, the minimal concurrence C corresponding to
the correlations in Eqs. �11� is given by

C �
1

2
��	X � X�� + �	Y � Y�� + �	Z � Z�� − 1�

� F1 + F2 + F3 − 2. �12�

This result confirms the criterion for quantum parallelism
given by inequality �9�. In fact, Eq. �11� indicates that it is
even possible to identify the precise contribution of each

local operation to the inseparable correlations of the en-
tangled output state. The intuitive notion that quantum par-
allelism corresponds to a simultaneous performance of dis-
tinct local operations expressed by the decomposition in Eq.
�8� is thus confirmed by the possibility of generating en-
tanglement when the fidelity limits of local operations are
exceeded.

In previous tests of experimental quantum gates, the veri-
fication of entanglement generation has been performed
separately from the determination of the classical fidelity F1
in the computational basis �3,5�. The results given above
show that a more consistent evaluation of classical fidelities
and entanglement capability can be achieved by measuring
the complete set of three classical fidelities Fi. By fully char-
acterizing the essential operations of the quantum controlled-
NOT gate, the fidelities Fi also provide a measure of how
closely any experimental realization approximates the ideal
quantum gate. Such a measure has only been given in �11�,
where it is noted that the measurement probabilities of 65
local settings of input and output states were necessary to
evaluate the process fidelity. In contrast, the proposed evalu-
ation of quantum parallelism requires only the 16 measure-
ment probabilities needed to determine the fidelities Fi ac-
cording to Eq. �7�. In the light of the discussions given in
�3,5,11�, it seems that the fidelities Fi can provide a surpris-
ingly compact characterization of the essential quantum gate
properties.

It should also be noted that the present approach not only
provides a measure of gate performance, but also identifies
and characterizes three different functions of the gate which,
when combined, make up the complete operator of the gate,
ECNOT. As the initial derivation of the local processes shows,
each of the three fidelities can be identified with a specific
coherence in the process matrix given in Eq. �1�. The par-
ticular choice of the three fidelities is thus determined by the
expansion of the gate operation into four locally defined
components. It may be possible to characterize the gate using
even fewer measurements, but such procedures would not
evaluate the complete quantum coherence, or quantum par-
allelism, of the operation. Likewise, it is possible to obtain a
more detailed insight into the noise signature of the operation
by measuring more classical fidelities. However, the three
fidelities given here already determine the essential quantum
coherences defining the quantum parallelism of the opera-
tion. In general, the procedure introduced above thus identi-
fies the essential quantum parallelism of multi qubit gates
with a minimal set of representative classical fidelities. Spe-
cifically, an average fidelity below 2/3 indicates that the per-
formance of the gate can be reproduced by local operations
and classical communications according to the decomposi-
tion given in Eq. �8�, while an average fidelity above 2/3
proves that no such local decomposition exists.

In conclusion, it has been shown that the quantum coher-
ent operation of an ideal quantum controlled-NOT gate can be
expressed in terms of the parallel performance of three dis-
tinct local operations. Each of these local operations Li cor-
responds to a characteristic logical function that can be
evaluated experimentally by measuring its classical fidelity
Fi. If the average fidelity of the three operations exceeds 2/3,
the experimental gate effectively performs more than one
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local operation in parallel and entanglement generation is
possible. An estimate of the noisy quantum operation can
also be obtained by adjusting the statistical weight of the
operations Li according to the observed fidelities Fi. The
measurement of the three classical fidelities Fi thus provides

an efficient test of the performance of experimental quantum
controlled-NOT gates.
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