13 research outputs found

    Computational Simulations of Fabrication of Aluminum-Based Josephson Junctions: Topological Aspects of the Barrier Structure

    No full text
    Although the performance of qubits has been improved in recent years, the differences in the microscopic atomic structure of the Josephson junctions, the core devices prepared under different preparation conditions, are still underexplored. In this paper, the effects of the oxygen temperature and upper aluminum deposition rate on the topology of the barrier layer in the aluminum-based Josephson junctions have been presented by classical molecular dynamics simulations. We apply a Voronoi tessellation method to characterize the topology of the interface and central regions of the barrier layers. We find that when the oxygen temperature is 573 K and the upper aluminum deposition rate is 4 Å/ps, the barrier has the fewest atomic voids and the most closely arranged atoms. However, if only the atomic arrangement of the central region is considered, the optimal rate of the aluminum deposition is 8 Å/ps. This work provides microscopic guidance for the experimental preparation of Josephson junctions, which helps to improve the performance of qubits and accelerate the practical application of quantum computers

    Computational Simulations of Fabrication of Aluminum-Based Josephson Junctions: Topological Aspects of the Barrier Structure

    No full text
    Although the performance of qubits has been improved in recent years, the differences in the microscopic atomic structure of the Josephson junctions, the core devices prepared under different preparation conditions, are still underexplored. In this paper, the effects of the oxygen temperature and upper aluminum deposition rate on the topology of the barrier layer in the aluminum-based Josephson junctions have been presented by classical molecular dynamics simulations. We apply a Voronoi tessellation method to characterize the topology of the interface and central regions of the barrier layers. We find that when the oxygen temperature is 573 K and the upper aluminum deposition rate is 4 Å/ps, the barrier has the fewest atomic voids and the most closely arranged atoms. However, if only the atomic arrangement of the central region is considered, the optimal rate of the aluminum deposition is 8 Å/ps. This work provides microscopic guidance for the experimental preparation of Josephson junctions, which helps to improve the performance of qubits and accelerate the practical application of quantum computers

    Directly Controlling the Transport Properties of All-Nitride Josephson Junctions by N-Vacancy Defects

    No full text
    All-nitride Josephson junctions are being actively explored for applications in superconducting quantum chips because of their unique advantages including their antioxidant chemical stability and high crystal quality. However, the theoretical research on their microstructure mechanism that determines transport properties is still absent, especially on the defects. In this paper, we apply the first principles and non-equilibrium Green’s function to calculate the electrical transport characteristics of the yellow preset model. It is first revealed that the N-vacancy defects play a crucial role in determining the conductivity of the NbN-based Josephson junctions, and demonstrate the importance for the uniformity of vacancy distribution. It is found that the uniform number of vacancies can effectively increase the conductance of Josephson junction, but the position distribution of vacancies has little effect on the conductance. The work clarifies the effect of the N-vacancy defects on the conductivity of the NbN-based Josephson junctions, which offers useful guidance for understanding the microscope mechanism of the NbN-based Josephson junction, thus showing a great prospect in the improvement of the yield of superconducting quantum chips in the future

    LaAlO3/SrTiO3 Heterointerface: 20 Years and Beyond

    No full text
    Abstract This year marks the 20th anniversary of the discovery of LaAlO3/SrTiO3 (LAO/STO) oxide heterointerfaces. Since their discovery, transition metal oxide (TMO) interfaces have emerged as a fascinating and fast‐growing area of research, offering a variety of unique and exotic physical properties which has provided a strong impetus for the rapid advances and actualization of oxide electronics. This review revisits the fundamental mechanisms accounting for the two‐dimensional (2D) conducting interfaces, and how new models proposed to better account for the unique interfacial effects. Recent breakthroughs in the theoretical and experimental domains of oxide interfaces are also discussed including the detection and investigation of 2D quasiparticle. Moving beyond the well‐known LAO/STO interface, this review delves into other systems where unconventional interfacial superconductivity, interfacial magnetism, and spin polarization are dealt with in greater detail. In terms of device applications, this review proceeds with a treatment on the recent developments in domains including field effect transistors and freestanding heterostructure membranes. By emphasizing the opportunities and challenges of integrating oxide interfaces with existing technologies, the review will end off with an outlook projecting the progress and the trajectory of this research domain in the years to come
    corecore