2,700 research outputs found
Lattice study on and X(3872)
Properties of charmonium are investigated in quenched
lattice QCD. The mass of is determined to be 3.80(3) GeV, which is
close to the mass of -wave charmonium and in agreement with
quark model predictions. The transition width of
is also obtained with a value keV. Since the possible
assignment to X(3872) has not been ruled out by experiments, our results help
to clarify the nature of X(3872).Comment: 15 pages, 8 figures. typos, grammatical errors and some references
corrected, redundant discussions deleted, conclusion does not change.
published versio
Glueballs in charmonia radiative decays
Scalar \cite{scalar_paper} and tensor \cite{tensor_paper} glueballs created
in radiative decays are studied in quenched lattice QCD. Using two
anisotropic lattices to approach the continuum limit, we compute the relevant
form factors responsible for the decay rates for and .
Comparing with the existing experimental data, it is argued that
is a favorable candidate for scalar glueball. The decay rate for
is found to be quite substantial. A
comprehensive search in the tensor channel on BESIII is therefore suggested.Comment: Presented at the 31st International Symposium on Lattice Field Theory
(Lattice 2013), 29 July - 3 August 2013, Mainz, Germany, 7 pages, 2 figure
Recommended from our members
Large fine‐scale spatiotemporal variations of CH4 diffusive fluxes from shrimp aquaculture ponds affected by organic matter supply and aeration in Southeast China
Mariculture shrimp ponds are important CH4 sources to the atmosphere. However, the spatiotemporal variations of CH4 concentration and flux at fine spatial scales in mariculture ponds are poorly known, particularly in China, worlds largest aquaculture producer. In this study, the plot‐scale spatiotemporal variations of water CH4 concentration and flux, both within and among ponds, were researched in shrimp ponds in Shanyutan wetland, Min River Estuary, Southeast China. The average water CH4 concentration and diffusion flux across the water‐air interface in the shrimp ponds over the shrimp aquaculture period varied from 2.29 ± 0.29 to 50.48 ± 20.91 μM and from 0.09 ± 0.01 to 2.32 ± 0.95 mmol·m−2·hr−1, respectively. The CH4 emissions from the estuarine ponds varied greatly between seasons, with peaks in August and September, which was similar to the trend of water temperature and dissolved oxygen concentrations. There was no remarkable difference in CH4 concentration and flux between shrimp ponds but significantly spatiotemporal differences in CH4 concentration and flux within the ponds. Significantly higher emissions occurred in the feeding zone, accounting for approximately 60% of total CH4 emission flux, while much lower CH4 emissions appeared in aeration zone, contributing 14% to total flux. This study suggests the importance of considering spatiotemporal variation in the whole‐pond estimates of CH4 concentration and flux. In light of such high spatial variation within ponds, improving aeration and feed utilization efficiency would help to mitigate CH4 emissions from mariculture ponds
Selection and environmental adaptation along a path to speciation in the Tibetan frog Nanorana parkeri.
Tibetan frogs, Nanorana parkeri, are differentiated genetically but not morphologically along geographical and elevational gradients in a challenging environment, presenting a unique opportunity to investigate processes leading to speciation. Analyses of whole genomes of 63 frogs reveal population structuring and historical demography, characterized by highly restricted gene flow in a narrow geographic zone lying between matrilines West (W) and East (E). A population found only along a single tributary of the Yalu Zangbu River has the mitogenome only of E, whereas nuclear genes of W comprise 89-95% of the nuclear genome. Selection accounts for 579 broadly scattered, highly divergent regions (HDRs) of the genome, which involve 365 genes. These genes fall into 51 gene ontology (GO) functional classes, 14 of which are likely to be important in driving reproductive isolation. GO enrichment analyses of E reveal many overrepresented functional categories associated with adaptation to high elevations, including blood circulation, response to hypoxia, and UV radiation. Four genes, including DNAJC8 in the brain, TNNC1 and ADORA1 in the heart, and LAMB3 in the lung, differ in levels of expression between low- and high-elevation populations. High-altitude adaptation plays an important role in maintaining and driving continuing divergence and reproductive isolation. Use of total genomes enabled recognition of selection and adaptation in and between populations, as well as documentation of evolution along a stepped cline toward speciation
Recommended from our members
Carbon dioxide dynamics from sediment, sediment-water interface and overlying water in the aquaculture shrimp ponds in subtropical estuaries, southeast China
Aquaculture ponds can emit a large amount carbon dioxide (CO2), with the consequence of exacerbating global climate change. Many studies about CO2 dynamics across the water-air interface, but CO2 in sediment and overlying water received relative less attention. In this study, CO2 concentration in sediment porewater, the diffusive CO2 fluxes across the sediment-water interface (SWI), and the CO2 production rates in the overlying water (CO2_WP) were determined in the shrimp ponds in the Min River Estuary (MRE) and Jiulong River Estuary (JRE), southeast China, to analyze the dynamics of CO2 among different growth stages of shrimps. Our results showed large variations in porewater CO2 concentrations, CO2 diffusive fluxes and CO2_WP rates among different growth stages, with markedly larger values in the middle stage of shrimp growth. The temporal variation of CO2 in both estuarine ponds followed closely the seasonal change of temperature. The internal CO2 production (CO2_IP) in these ponds was dominated by sediments. A significantly larger mean porewater CO2 concentrations, diffusive fluxes and production rate were observed in the MRE ponds than those in the JRE ponds, which could be attributed to the lower water salinity and a larger source of carbon substrates in the former estuary. Considering a total surface area of 6.63 × 103 km2 across the mariculture ponds in subtropical estuaries, it is estimated conservatively that approximately 100 Gigagram (Gg) of dissolved organic carbon and 190 Gg of dissolved inorganic carbon were transported annually from the mariculture ponds into China's coastal areas. Because of the substantial supply of dissolved carbon, the adjacent coastal waters receiving effluent discharge from the mariculture ponds could become “hotspots” of CO2 emissions. Our results highlight the role of aquaculture pond as a major CO2 source in China's coastal areas, and effective actions are needed to alleviate the greenhouse gas (GHG) emissions from these ponds
XTH31, Encoding an in Vitro XEH/XET-Active Enzyme, Regulates Aluminum Sensitivity by Modulating in Vivo XET Action, Cell Wall Xyloglucan Content, and Aluminum Binding Capacity in Arabidopsis
Xyloglucan endohydrolase (XEH) and xyloglucan endotransglucosylase (XET) activities, encoded by xyloglucan endotransglucosylase-hydrolase (XTH) genes, are involved in cell wall extension by cutting or cutting and rejoining xyloglucan chains, respectively. However, the physiological significance of this biochemical activity remains incompletely understood. Here, we find that an XTH31 T-DNA insertion mutant, xth31, is more Al resistant than the wild type. XTH31 is bound to the plasma membrane and the encoding gene is expressed in the root elongation zone and in nascent leaves, suggesting a role in cell expansion. XTH31 transcript accumulation is strongly downregulated by Al treatment. XTH31 expression in yeast yields a protein with an in vitro XEH:XET activity ratio of >5000:1. xth31 accumulates significantly less Al in the root apex and cell wall, shows remarkably lower in vivo XET action and extractable XET activity, has a lower xyloglucan content, and exhibits slower elongation. An exogenous supply of xyloglucan significantly ameliorates Al toxicity by reducing Al accumulation in the roots, owing to the formation of an Al-xyloglucan complex in the medium, as verified by an obvious change in chemical shift of (27)Al-NMR. Taken together, the data indicate that XTH31 affects Al sensitivity by modulating cell wall xyloglucan content and Al binding capacity
Recommended from our members
Production and uptake of dissolved carbon, nitrogen, and phosphorus in overlying water of aquaculture shrimp ponds in subtropical estuaries, China
Water quality deterioration can adversely affect the long-term sustainability of aquaculture industry. Understanding the processes of nutrient regeneration and uptake is important for improving water quality and the overall ecosystem health of aquaculture system. In spite of the importance of dissolved nutrients (DOC, DIC, N-NO , N-NH , and P-PO ) in governing water quality and ecosystem functioning, the spatiotemporal variations in the production and uptake of dissolved nutrients in aquaculture ponds is still poorly understood. In this study, the nutrient production and uptake rates in the overlying water were quantified among different shrimp growth stages in the aquaculture ponds in the Min River Estuary (MRE) and Jiulong River Estuary (JRE), southeast China. Significant differences in the nutrient production and uptake rates in the overlying water were observed among the three growth stages and two estuaries. The temporal variations of DOC and DIC production rates in both estuarine ponds closely followed the seasonal cycle of temperature, while the difference in DOC and DIC production rates between the two estuaries was likely caused by differences in water salinity. The changes in the production and uptake rates of dissolved inorganic nitrogen (N-NO and N-NH ) and P-PO in the water column over time were partly related to the interactions between thermal conditions and phytoplankton biomass (e.g., chlorophyll a concentrations) in the ponds. Our results demonstrate the complex dynamics and environmental risk of dissolved nutrients in subtropical shrimp ponds, and call for a more effective management of nutrient-laden wastewater in safeguarding the long-term sustainability of aquaculture production
milr: Multiple-Instance Logistic Regression with Lasso Penalty
The purpose of the milr package is to analyze multiple-instance data. Ordinary multiple instance data consists of many independent bags, and each bag is composed of several instances. The statuses of bags and instances are binary. Moreover, the statuses of instances are not observed, whereas the statuses of bags are observed. The functions in this package are applicable for analyzing multiple-instance data, simulating data via logistic regression, and selecting important covariates in the regression model. To this end, maximum likelihood estimation with an expectation-maximization algorithm is implemented for model estimation, and a lasso penalty added to the likelihood function is applied for variable selection. Additionally, an milr object is applicable to generic functions fitted, predict and summary. Simulated data and a real example are given to demonstrate the features of this package
Interferon-Induced Transmembrane Protein 3 Inhibits Hantaan Virus Infection, and Its Single Nucleotide Polymorphism rs12252 Influences the Severity of Hemorrhagic Fever with Renal Syndrome
- …
